Контрольная по машине тьюринга

Контрольная по машине тьюринга

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Один из важнейших вопросов современной информатики — существует ли формальный исполнитель, с помощью которого можно имитировать любого формального исполнителя. ответ на этот вопрос был получен почти одновременно двумя выдающимися учеными — А. Тьюрингом и Э. Постом. Предложенные ими исполнители отличались друг от друга, но оказалось, что они могут имитировать друг друга, а главное — имитировать работу любого формального исполнителя.

Что такое формальный исполнитель? Что значит — один формальный исполнитель имитирует работу другого формального исполнителя? Если Вы играли в компьютерные игры — на экране объекты беспрекословно подчиняются командам играющего. Каждый объект обладает набором допустимых команд. В то же время компьютер сам является исполнителем, причем не виртуальным, а реальным. Вот и получается, что один формальный исполнитель имитирует работу другого формального исполнителя.

Рассмотрим работу Машины Тьюринга.

Машина Тьюринга представляет собой бесконечную ленту, поделенную на ячейки, и каретку (считывающе-печатающее устройство), которая движется вдоль ленты.

Таким образом Машина Тьюринга формально описывается набором двух алфавитов:

A= — внешний алфавит, служит для записи исходных данных

Q= — внутренний алфавит, описывает набор состояний считывающе-печатного устройства.

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Каждая ячейка ленты может содержать символ из внешнего алфавита A = (В нашем случае A=<0, 1>)

Допустимые действия Машины Тьюринга таковы:

1) записать какой-либо символ внешнего алфавита в ячейку ленты (символ, бывший там до того, затирается)

2) сместиться в соседнюю ячейку

3) сменить состояние на одно из обозначенных символом внутреннего алфавита Q

Машина Тьюринга — это автомат, который управляется таблицей.

Строки в таблице соответствуют символам выбранного алфавита A, а столбцы — состояниям автомата Q = . В начале работы машина Тьюринга находится в состоянии q1. Состояние q0 — это конечное состояние, попав в него, автомат заканчивает работу.

В каждой клетке таблицы, соответствующей некоторому символу ai и некоторому состоянию qj, находится команда, состоящая из трех частей
· символ из алфавита A
· направление перемещения: «>» (вправо), «

Источник

Машина Тьюринга

Простое вычислительное устройство машина Тьюринга и ее алгоритмические свойства. Тезис Черча–Тьюринга и моделирование машины Тьюринга (операции перезаписи ячеек, сравнения и перехода к другой соседней ячейке с учетом изменения состояния машины).

Подобные документы

А.М. Тьюринг как английский математик, логик, криптограф, оказавший существенное влияние на развитие информатики. Понятие и назначение машины Тьюринга, принцип ее работы и сферы практического применения. Этапы реализации парадигмы программирования.

реферат, добавлен 04.10.2011

Методика разработки программы, предназначенной для разбора предложения с помощью многоленточной машины Тьюринга. Цели и назначение данной системы, основные требования, предъявляемые к ней. Организационно-исполнительные работы по содержанию системы.

курсовая работа, добавлен 16.12.2010

Происхождение и сущность понятия «алгоритм». Основные требования к алгоритмам. Роль абстрактных алгоритмических систем. Алгоритм как абстрактная машина. Алгоритмическая машина Поста. Схема логического устройства и функционирования машины Тьюринга.

реферат, добавлен 16.03.2011

Изучение методик языка Javascript по формализации и решению поставленной задачи, технологических приемов разработки программ на языке Javascript, HTML, CSS. Формально определение машины Тьюринга, распознающую язык. Ее программная модель, протоколы работы.

курсовая работа, добавлен 03.03.2015

Примеры запросов к одной из поисковых систем Интернет (подбор ключевых слов) и расчетов в табличном процессоре MS Excel (инструменты). Описание машины Тьюринга: составляющие и их функционирование. Основные форматы представления графических данных.

контрольная работа, добавлен 09.06.2009

Положения машины Тьюринга. Алгоритмически неразрешимые проблемы: «остановка», эквивалентность алгоритмов, тотальность. Свойства алгоритма: дискретность, детерминированность, результативность, массовость. Выбор структуры данных. Решение на языке Haskell.

курсовая работа, добавлен 16.11.2013

История возникновения и развития понятия «машинный интеллект». Суть теста Тьюринга, разработанного для оценки интеллекта машины. Принцип функционирования машины для решения головоломки из восьми фишек. Состояние распознавание образа, мышления, анализа.

презентация, добавлен 14.10.2013

Более строгое описание алгоритма, чем общее или формализация понятия алгоритма. Три подхода к формализации: теория конечных и бесконечных автоматов, теория вычислимых (рекурсивных) функций и л-исчисление Черча. Воображаемые машины Поста и Тьюринга.

реферат, добавлен 09.02.2009

Сущность, понятие и назначение квантового комп’ютера; его использование для вычисления процессов квантовой природы. Физические системы, реализующие кубиты. Упрощённая схема вычисления на квантовом компьютере. Тезис Черча-Тьюринга. Алгоритм Deutsch-Josza.

реферат, добавлен 10.11.2014

Нормальный алгоритм Маркова. Тезис Маркова и машина Тьюринга. Гипотеза теории алгоритмов. Алгоритмически неразрешимые проблемы. Задача эквивалентности двух слов в ассоциативном исчислении. Задача распознавания выводимости. Линейная оценка сложности.

методичка, добавлен 06.07.2009

Источник

Тест по теме «Машина Тьюринга»

Тест «Машина Тьюринга»

Установите соответствие между символами и их значениями

Укажите соответствие для всех 3 вариантов ответа:

__ Начальное состояние

__ Состояние останова

Какие из указанных дат относятся к годам жизни А. Тьюринга (го рождения и год смерти)?

Выберите несколько из 5 вариантов ответа:

Выберите все верные утверждения.

Выберите несколько из 5 вариантов ответа:

1) МТ снабжена потенциально бесконечной памятью

3) В каждой ячейке может быть записано несколько символов внешнего алфавита МТ

4) МТ управляется программой

5) В МТ может быть только одна лента

Какую задачу решает данная программа машины Тьюринга?

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Выберите один из 4 вариантов ответа:

1) Увеличение десятичного числа на единицу. Каретка обозревает крайнюю правую цифру числа

2) Уменьшение десятичного числа на единицу с корректировкой незначащих нулей. Каретка обозревает крайнюю правую цифру числа

3) Уменьшение десятичного числа на единицу без корректировки незначащих нулей. Каретка обозревает крайнюю правую цифру числа

4) Уменьшение десятичного числа на единицу без корректировки незначащих нулей. Каретка обозревает произвольную цифру числа

Какую задачу решает данная программа машины Тьюринга?

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Выберите один из 4 вариантов ответа:

1) Увеличение десятичного числа на единицу. Каретка обозревает крайнюю правую цифру числа

2) Уменьшение десятичного числа на единицу с корректировкой незначащих нулей. Каретка обозревает крайнюю правую цифру числа

3) Уменьшение десятичного числа на единицу без корректировки незначащих нулей. Каретка обозревает крайнюю правую цифру числа

4) Увеличение десятичного числа на единицу. Каретка обозревает произвольную цифру числа

Какую задачу решает данная программа машины Тьюринга?

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Выберите один из 5 вариантов ответа:

1) Увеличение восьмеричного числа на единицу. Каретка обозревает крайнюю правую цифру числа

2) Уменьшение восьмеричного числа на единицу с корректировкой незначащих нулей. Каретка обозревает крайнюю правую цифру числа

3) Уменьшение восьмеричного числа на единицу без корректировки незначащих нулей. Каретка обозревает крайнюю правую цифру числа

4) Увеличение восьмеричного числа на единицу. Каретка обозревает произвольную цифру числа

5) Уменьшение десятичного числа на единицу без корректировки незначащих нулей. Каретка обозревает произвольную цифру числа

Какую задачу решает данная программа машины Тьюринга?

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Выберите один из 4 вариантов ответа:

1) Увеличение десятичного числа на единицу. Каретка обозревает крайнюю правую цифру числа

2) Уменьшение десятичного числа на единицу с корректировкой незначащих нулей. Каретка обозревает крайнюю правую цифру числа

3) Уменьшение десятичного числа на единицу без корректировки незначащих нулей. Каретка обозревает произвольную цифру числа

4) Увеличение десятичного числа на единицу. Каретка обозревает произвольную цифру числа

Выберите описание состояния q 2 приведённой машины Тьюринга

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Выберите один из 3 вариантов ответа:

1) Анализ младшей цифры числа

2) Поиск правого конца числа

3) Анализ старшей цифры числа

Выберите описание состояния q2 приведённой машины Тьюринга

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Выберите один из 4 вариантов ответа:

1) Уменьшаем младшую (очередную) цифру на 1

2) После записи “0” в каком-либо разряде анализируем, не является ли этот ноль старшей незначащей цифрой

3) Увеличиваем младшую (очередную) цифру на 1

4) Если записанный “0” является старшей незначащей цифрой, то удаляем его из записи выходного слова

Какова мощность внешнего алфавита данной машины Тьюринга?

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

1) (1 б.) Верные ответы:

2) (1 б.) Верные ответы: 1; 3;

3) (1 б.) Верные ответы: 1; 2; 4;

4) (1 б.) Верные ответы: 3;

5) (1 б.) Верные ответы: 1;

6) (1 б.) Верные ответы: 1;

7) (1 б.) Верные ответы: 2;

8) (1 б.) Верные ответы: 1;

9) (1 б.) Верные ответы: 2;

10) (1 б.): Верный ответ: 16.;

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Курс повышения квалификации

Охрана труда

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Курс профессиональной переподготовки

Охрана труда

Ищем педагогов в команду «Инфоурок»

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Номер материала: ДБ-1249373

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Путин поручил не считать выплаты за классное руководство в средней зарплате

Время чтения: 1 минута

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Петербургский Политех перевел студентов на дистанционку

Время чтения: 1 минута

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст

Время чтения: 1 минута

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

В Госдуме проверят содержание учебников русского языка как иностранного

Время чтения: 2 минуты

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

В МГУ заработала университетская квантовая сеть

Время чтения: 1 минута

Контрольная по машине тьюринга. Смотреть фото Контрольная по машине тьюринга. Смотреть картинку Контрольная по машине тьюринга. Картинка про Контрольная по машине тьюринга. Фото Контрольная по машине тьюринга

Дума приняла закон о бесплатном проживании одаренных детей в интернатах при вузах

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Контрольная работа: Машина Тьюринга

Содержание

1. Описание машины Тьюринга. 3

1.1 Свойства машины Тьюринга как алгоритма. 5

2. Сложность алгоритмов. 7

2.1 Сложность проблем.. 9

3. Машина Тьюринга и алгоритмически неразрешимые проблемы.. 12

Список литературы.. 18

Введение

Устройство машины Тьюринга чрезвычайно просто, однако на ней можно выполнить практически любую программу. Для выполнения всех этих действий предусмотрена специальная таблица правил, в которой прописано, что нужно делать при различных комбинациях текущих состояний и символов, прочитанных с ленты.

В 1947 г. Алан Тьюринг расширил определение, описав «универсальную машину Тьюринга». Позже для решения определенных классов задач была введена ее разновидность, которая позволяла выполнять не одну задачу, а несколько.

1. Описание машины Тьюринга

Алан Тьюринг (Turing) в 1936 году опубликовал в трудах Лондонского математического общества статью «О вычислимых числах в приложении к проблеме разрешения», которая наравне с работами Поста и Черча лежит в основе современной теории алгоритмов.

Приведем характеристику этой работы, принадлежащую Джону Хопкрофту: «Работая над проблемой Гильберта, Тьюрингу пришлось дать четкое определение самого понятия метода. Отталкиваясь от интуитивного представления о методе как о некоем алгоритме, т.е. процедуре, которая может быть выполнена механически, без творческого вмешательства, он показал, как эту идею можно воплотить в виде подробной модели вычислительного процесса. Полученная модель вычислений, в которой каждый алгоритм разбивался на последовательность простых, элементарных шагов, и была логической конструкцией, названной впоследствии машиной Тьюринга».

Машина Тьюринга является расширением модели конечного автомата, расширением, включающим потенциально бесконечную память с возможностью перехода (движения) от обозреваемой в данный момент ячейки к ее левому или правому соседу.

Формально машина Тьюринга может быть описана следующим образом. Пусть заданы:

конечное множество состояний – Q, в которых может находиться машина Тьюринга;

конечное множество символов ленты – Г;

функция δ (функция переходов или программа), которая задается отображением пары из декартова произведения Q x Г (машина находится в состоянии qi и обозревает символ gi) в тройку декартова произведения Q х Г х (машина переходит в состояние qi, заменяет символ gi на символ gj и передвигается влево или вправо на один символ ленты) – Q x Г—>Q х Г х

один символ из Г—>е (пустой);

одно из состояний – q0 є Q является начальным состоянием машины.

Решаемая проблема задается путем записи конечного количества символов из множества Σ є Г – Si є Σ на ленту:

Остановка машины происходит в том случае, если для пары (qi,Si) функция перехода не определена.

Алан Тьюринг высказал предположение, что любой алгоритм в интуитивном смысле этого слова может быть представлен эквивалентной машиной Тьюринга. Это предположение известно как тезис Черча–Тьюринга. Каждый компьютер может моделировать машину Тьюринга (операции перезаписи ячеек, сравнения и перехода к другой соседней ячейке с учетом изменения состояния машины). Следовательно, он может моделировать алгоритмы в любом формализме, и из этого тезиса следует, что все компьютеры (независимо от мощности, архитектуры и т.д.) эквивалентны с точки зрения принципиальной возможности решения алгоритмических задач.

1.1 Свойства машины Тьюринга как алгоритма

На примере машины Тьюринга хорошо прослеживаются свойства алгоритмов. Попросите учащихся показать, что машина Тьюринга обладает всеми свойствами алгоритма.

Понятность. На каждом шаге в ячейку пишется символ из алфавита, автомат делает одно движение (Л, П, Н), и машина Тьюринга переходит в одно из описанных состояний.

Детерминированность. В каждой клетке таблицы машины Тьюринга записан лишь один вариант действия. На каждом шаге результат определен однозначно, следовательно, последовательность шагов решения задачи определена однозначно, т.е. если машине Тьюринга на вход подают одно и то же входное слово, то выходное слово каждый раз будет одним и тем же.

Результативность. Содержательно результаты каждого шага и всей последовательности шагов определены однозначно, следовательно, правильно написанная машина Тьюринга за конечное число шагов перейдет в состояние q0, т.е. за конечное число шагов будет получен ответ на вопрос задачи.

Массовость. Каждая машина Тьюринга определена над всеми допустимыми словами из алфавита, в этом и состоит свойство массовости. Каждая машина Тьюринга предназначена для решения одного класса задач, т.е. для каждой задачи пишется своя (новая) машина Тьюринга.

2. Сложность алгоритмов

Обычно вычислительная сложность алгоритма выражается с помощью нотации «О большого», т. е описывается порядком величины вычислительной сложности. Это просто член разложения функции сложности, быстрее всего растущий с ростом n, все члены низшего порядка игнорируются. Например, если временная сложность данного алгоритма равна 4n2+7n+12, то вычислительная сложность порядка n2, записываемая как О(n2).

Временная сложность измеренная таким образом не зависит от реализации. Не нужно знать ни точное время выполнения различных инструкций, ни число битов, используемых для представления различных переменных, ни даже скорость процессора. Один компьютер может быть на 50 процентов быстрее другого, а у третьего шина данных может быть в два раза шире, но сложность алгоритма, оцененная по прядку величины, не изменится. Это не жульничество, при работе с алгоритмами настолько сложными, как описанные в этой книге, всем прочим можно пренебречь (с точностью до постоянного множителя) в сравнении со сложностью по порядку величины.

Эта нотация позволяет увидеть, как объем входных данных влияет на требования к времени и объему памяти. Например, если Т= О(n), то удвоение входных данных удвоит и время выполнения алгоритма. Если Т=О(2n), то добавление одного бита к входным данным удвоит время выполнения алгоритма.

В идеале, криптограф хотел бы утверждать, что алгоритм, лучший для взлома спроектированного алгоритма шифрования, обладает экспоненциальной временной сложностью. На практике, самые сильные утверждения, которые могут быть сделаны при текущем состоянии теории вычислительной сложности, имеют форму «все известные алгоритмы вскрытия данной криптосистемы обладают суперполиномиальной временной сложностью». То есть, известные нам алгоритмы вскрытия обладают суперполиномиальной временной сложностью, но пока невозможно доказать, что не может быть открыт алгоритм вскрытия с полиномиальной временной сложностью. Развитие теории вычислительной сложности возможно когда-нибудь позволит создать алгоритмы, для которых существование алгоритмов с полиномиальным временем вскрытия может быть исключено с математической точностью.

С ростом n временная сложность алгоритмов может стать настолько огромной, что это повлияет на практическую реализуемость алгоритма.

2.1 Сложность проблем

Теория сложности также классифицирует и сложность самих проблем, а не только сложность конкретных алгоритмов решения проблемы. Теория рассматривает минимальное время и объем памяти, необходимые для решения самого трудного варианта проблемы на теоретическом компьютере, известном как машина Тьюринга. Машина Тьюринга представляет собой конечный автомат с бесконечной лентой памяти для чтения записи и является реалистичной моделью вычислений.

Проблемы, которые можно решить с помощью алгоритмов с полиномиальным временем, называются решаемыми, потому что для разумных входных данных обычно могут быть решены за разумное время. (Точное определение «разумности» зависит от конкретных обстоятельств) Проблемы, которые невозможно решить за полиномиальное время, называются нерешаемыми, потому что вычисление их решений быстро становится невозможным. Нерешаемые проблемы иногда называют трудными. Проблемы, которые могут быть решены только с помощью суперполиномиальных алгоритмов, вычислительно нерешаемы, даже при относительно малых значениях n.

Что еще хуже, Алан Тьюринг доказал, что некоторые проблемы принципиально неразрешимы. Даже отвлекаясь от временной сложности алгоритма, невозможно создать алгоритм решения этих проблем.

Задачи можно разбить на классы в соответствии со сложностью их решения. Вот важнейшие из них и предполагаемые соотношения между ними:

P NP (или P=NP). Однако, большинство специалистов, занимающихся теорией сложности, убеждены, что это классы неравны.

Как ни странно, можно доказать, что некоторые NP-задачи настолько же трудны, что и любая задача этого класса. Такие задачи называются NP-полными. То есть, если такая задача решается за полиномиальное время, то P=NP.

Наконец, существует класс задач EXPTIME. Эти задачи решаются за экспоненциальное время. В настоящее время можно доказать, что EXPTIME-полные задачи невозможно решить за детерминированное полиномиальное время. Кроме того, доказано, что P<>EXPTIME.

3. Машина Тьюринга и алгоритмически неразрешимые проблемы

За время своего существования человечество придумало множество алгоритмов для решения разнообразных практических и научных проблем. Зададимся вопросом – а существуют ли какие-нибудь проблемы, для которых невозможно придумать алгоритмы их решения?

Утверждение о существовании алгоритмически неразрешимых проблем является весьма сильным – мы констатируем, что мы не только сейчас на знаем соответствующего алгоритма, но мы не можем принципиально никогда его найти.

Успехи математики к концу XIX века привели к формированию мнения, которое выразил Д. Гильберт – «в математике не может быть неразрешимых проблем», в связи с этим формулировка проблем Гильбертом на конгрессе 1900 года в Париже была руководством к действию, констатацией отсутствия решений в данный момент.

Первой фундаментальной теоретической работой, связанной с доказательством алгоритмической неразрешимости, была работа Курта Гёделя – его известная теорема о неполноте символических логик. Это была строго формулированная математическая проблема, для которой не существует решающего ее алгоритма. Усилиями различных исследователей список алгоритмически неразрешимых проблем был значительно расширен. Сегодня принято при доказательстве алгоритмической неразрешимости некоторой задачи сводить ее к ставшей классической задаче – «задаче останова».

Имеет место быть следующая теорема: не существует алгоритма (машины Тьюринга), позволяющего по описанию произвольного алгоритма и его исходных данных (и алгоритм и данные заданы символами на ленте машины Тьюринга) определить, останавливается ли этот алгоритм на этих данных или работает бесконечно.

Таким образом, фундаментально алгоритмическая неразрешимость связана с бесконечностью выполняемых алгоритмом действий, т.е. невозможностью предсказать, что для любых исходных данных решение будет получено за конечное количество шагов.

Тем не менее, можно попытаться сформулировать причины, ведущие к алгоритмической неразрешимости, эти причины достаточно условны, так как все они сводимы к проблеме останова, однако такой подход позволяет более глубоко понять природу алгоритмической неразрешимости:

а) Отсутствие общего метода решения задачи

Проблема 1: Распределение девяток в записи числа;

Определим функцию f(n) = i, где n – количество девяток подряд в десятичной записи числа, а i – номер самой левой девятки из n девяток подряд: =3,141592… f(1) = 5.

Задача состоит в вычислении функции f(n) для произвольно заданного n.

Поскольку число является иррациональным и трансцендентным, то мы не знаем никакой информации о распределении девяток (равно как и любых других цифр) в десятичной записи числа. Вычисление f(n) связано с вычислением последующих цифр в разложении, до тех пор, пока мы не обнаружим n девяток подряд, однако у нас нет общего метода вычисления f(n), поэтому для некоторых n вычисления могут продолжаться бесконечно – мы даже не знаем в принципе (по природе числа) существует ли решение для всех n.

Проблема 2: Вычисление совершенных чисел;

Совершенные числа – это числа, которые равны сумме своих делителей, например: 28 = 1+2+4+7+14.

Определим функцию S(n) = n-ое по счёту совершенное число и поставим задачу вычисления S(n) по произвольно заданному n. Нет общего метода вычисления совершенных чисел, мы даже не знаем, множество совершенных чисел конечно или счетно, поэтому наш алгоритм должен перебирать все числа подряд, проверяя их на совершенность. Отсутствие общего метода решения не позволяет ответить на вопрос о останове алгоритма. Если мы проверили М чисел при поиске n-ого совершенного числа – означает ли это, что его вообще не существует?

Проблема 3: Десятая проблема Гильберта;

Пусть задан многочлен n-ой степени с целыми коэффициентами – P, существует ли алгоритм, который определяет, имеет ли уравнение P=0 решение в целых числах?

Ю.В. Матиясевич показал, что такого алгоритма не существует, т.е. отсутствует общий метод определения целых корней уравнения P=0 по его целочисленным коэффициентам.

б) Информационная неопределенность задачи

Проблема 4: Позиционирование машины Поста на последний помеченный ящик;

Пусть на ленте машины Поста заданы наборы помеченных ящиков (кортежи) произвольной длины с произвольными расстояниями между кортежами и головка находится у самого левого помеченного ящика. Задача состоит установке головки на самый правый помеченный ящик последнего кортежа.

Попытка построения алгоритма, решающего эту задачу приводит к необходимости ответа на вопрос – когда после обнаружения конца кортежа мы сдвинулись вправо по пустым ящикам на М позиций и не обнаружили начало следующего кортежа – больше на ленте кортежей нет или они есть где-то правее? Информационная неопределенность задачи состоит в отсутствии информации либо о количестве кортежей на ленте, либо о максимальном расстоянии между кортежами – при наличии такой информации (при разрешении информационной неопределенности) задача становится алгоритмически разрешимой.

в) Логическая неразрешимость (в смысле теоремы Гёделя о неполноте)

Проблема 5: Проблема «останова» (см. теорема);

Проблема 6: Проблема эквивалентности алгоритмов;

По двум произвольным заданным алгоритмам (например, по двум машинам Тьюринга) определить, будут ли они выдавать одинаковые выходные результаты на любых исходных данных.

Проблема 7: Проблема тотальности;

По произвольному заданному алгоритму определить, будет ли он останавливаться на всех возможных наборах исходных данных. Другая формулировка этой задачи – является ли частичный алгоритм Р всюду определённым?

Заключение

Теория сложности также классифицирует и сложность самих проблем, а не только сложность конкретных алгоритмов решения проблемы. Теория рассматривает минимальное время и объем памяти, необходимые для решения самого трудного варианта проблемы на теоретическом компьютере, известном как машина Тьюринга. Машина Тьюринга представляет собой конечный автомат с бесконечной лентой памяти для чтения записи и является реалистичной моделью вычислений.

Задачи можно разбить на классы в соответствии со сложностью их решения. Вот важнейшие из них и предполагаемые соотношения между ними:

P NP (или P=NP). Однако, большинство специалистов, занимающихся теорией сложности, убеждены, что это классы неравны.

Как ни странно, можно доказать, что некоторые NP-задачи настолько же трудны, что и любая задача этого класса. Такие задачи называются NP-полными. То есть, если такая задача решается за полиномиальное время, то P=NP.

Список литературы

2. Фалевич Б.Я. Теория алгоритмов. – М.: ИНФРА-М, 2006. – с.324.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Название: Машина Тьюринга
Раздел: Рефераты по информатике, программированию
Тип: контрольная работа Добавлен 21:40:58 17 апреля 2009 Похожие работы
Просмотров: 3868 Комментариев: 21 Оценило: 4 человек Средний балл: 4.3 Оценка: неизвестно Скачать