укажите номер верного утверждения если в параллелограмме две стороны равны то такой параллелограмм
Укажите номер верного утверждения если в параллелограмме две стороны равны то такой параллелограмм
Укажите номер верного утверждения.
1) Если в параллелограмме диагонали равны, то этот параллелограмм — квадрат.
2) Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.
3) Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.
4) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 130°.
Проверим каждое из утверждений.
1) «Если в параллелограмме диагонали равны, то этот параллелограмм — квадрат.» — неверно, если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник, однако этих условий недостаточно для квадрата.
2) «Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.» — верно, если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.
3) «Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.» — неверно, стороны параллелограмма параллельны и образуют односторонние углы, а сумма односторонних углов равна 180°.
4) «Если сумма трёх углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 130°.» — неверно, сумма углов выпуклого четырехугольника равна 360°, а не 330°.
Укажите номер верного утверждения если в параллелограмме две стороны равны то такой параллелограмм
Укажите номер верного утверждения.
1) Если в параллелограмме две стороны равны, то такой параллелограмм является ромбом.
2) Если в четырёхугольнике две диагонали равны и перпендикулярны, то такой четырёхугольник — квадрат.
3) Если в ромбе диагонали равны, то такой ромб является квадратом.
4) Углы при меньшем основании трапеции тупые.
Проверим каждое из утверждений.
1) «Если в параллелограмме две стороны равны, то такой параллелограмм является ромбом» — неверно, поскольку у любого параллелограмма противоположные стороны равны, однако он не обязан быть ромбом. Правильно утверждение: параллелограмм является ромбом, только если смежные стороны равны.
2) «Если в четырёхугольнике две диагонали равны и перпендикулярны, то такой четырёхугольник — квадрат» — неверно, поскольку существуют четырёхугольники с равными взаимно перпендикулярными диагоналями, но не являющиеся квадратами. Правильное утверждение: Если в четырёхугольнике две диагонали равны и перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник — квадрат.
3) «Если в ромбе диагонали равны, то такой ромб является квадратом» — верно.
4) «Углы при меньшем основании трапеции тупые» — неверно, например, у прямоугольной трапеции только один угол при меньшем основании тупой.
Укажите номер верного утверждения если в параллелограмме две стороны равны то такой параллелограмм
Какие из данных утверждений верны? Запишите их номера.
1) Каждая из биссектрис равнобедренного треугольника является его медианой.
2) Диагонали прямоугольника равны.
3) У любой трапеции боковые стороны равны.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Каждая из биссектрис равнобедренного треугольника является его медианой» — неверно, верным будет утверждение «Каждая из биссектрис равностороннего треугольника является его медианой».
2) «Диагонали прямоугольника равны» — верно, по свойству прямоугольника.
3) «У любой трапеции боковые стороны равны» — неверно, т. к. боковые стороны равны только у равнобедренной трапеции.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны» — верно,по признаку параллельных прямых.
2) «Диагональ трапеции делит её на два равных треугольника» — неверно; верным будет утверждение: «Диагональ параллелограмма делит его на два равных треугольника».
Какое из следующих утверждений верно?
1) Диагональ трапеции делит её на два равных треугольника.
2) Косинус острого угла прямоугольного треугольника равен отношению гипотенузы к прилежащему к этому углу катету.
3) Расстояние от точки, лежащей на окружности, до центра окружности равно радиусу.
В ответ запишите номер выбранного утверждения.
Рассмотрим каждое из утверждений:
1) «Диагональ трапеции делит её на два равных треугольника» — неверно; верным будет утверждение: «Диагональ параллелограмма делит его на два равных треугольника».
2) «Косинус острого угла прямоугольного треугольника равен отношению гипотенузы к прилежащему к этому углу катету» — неверно; верным будет утверждение: «Косинус острого угла прямоугольного треугольника равен отношению прилежащего к этому углу катета к гипотенузе».
3) «Расстояние от точки, лежащей на окружности, до центра окружности равно радиусу» — верно по определению
Какое из следующих утверждений верно?
1) Диагонали ромба точкой пересечения делятся пополам.
2) В тупоугольном треугольнике все углы тупые.
3) Каждая из биссектрис равнобедренного треугольника является его высотой.
В ответ запишите номер выбранного утверждения.
Рассмотрим каждое из утверждений:
1) «Диагонали ромба точкой пересечения делятся пополам» — верно по свойству ромба.
2) «В тупоугольном треугольнике все углы тупые» — неверно, так как в тупоугольном треугольнике только один угол — тупой.
3) «Каждая из биссектрис равнобедренного треугольника является его высотой» — неверно, верным будет являться утверждение: «Каждая из биссектрис равностороннего треугольника является его высотой».
Укажите номера верных утверждений.
1) В тупоугольном треугольнике все углы тупые.
2) В любом параллелограмме диагонали точкой пересечения делятся пополам.
3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.
Проверим каждое из утверждений.
1) «В тупоугольном треугольнике все углы тупые» — неверно, так как в тупоугольном треугольнике только один угол — тупой.
2) «В любом параллелограмме диагонали точкой пересечения делятся пополам» — верно; это свойство параллелограмма.
3) «Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка» — верно по свойству серединного перпендикуляра.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Квадрат диагонали прямоугольника равен сумме квадратов двух его смежных сторон.
Проверим каждое из утверждений.
1) «Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны» — верно, по признаку параллельности прямых.
2) «Диагональ трапеции делит её на два равных треугольника» — неверно, верным будет утверждение «Диагональ параллелограмма делит его на два равных треугольника».
3) «Квадрат диагонали прямоугольника равен сумме квадратов двух его смежных сторон» — верно, по теореме Пифагора.
Укажите номера верных утверждений.
1) Существует квадрат, который не является прямоугольником.
2) Если два угла треугольника равны, то равны и противолежащие им стороны.
3) Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны.
Проверим каждое из утверждений.
1) «Существует квадрат, который не является прямоугольником» — неверно, т. к. квадрат — частный случай прямоугольника.
2) «Если два угла треугольника равны, то равны и противолежащие им стороны» — верно, т. к. в треугольниках против равных сторон лежат равные углы.
3) «Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны» — верно, по свойству параллельных прямых.
Укажите номера верных утверждений.
1) Если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то треугольники подобны.
2) Сумма смежных углов равна 180°.
3) Любая высота равнобедренного треугольника является его биссектрисой.
Проверим каждое из утверждений.
1) «Если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то треугольники подобны» — верно, по третьему признаку подобия треугольников.
2) «Сумма смежных углов равна 180°» — верно, по теореме о смежных углах.
3) «Любая высота равнобедренного треугольника является его биссектрисой» — неверно, верным будет являться утверждение «Высота равнобедренного треугольника, проведённая к его основанию, является его биссектрисой».
Укажите номера верных утверждений.
1) Центры вписанной и описанной окружностей равнобедренного треугольника совпадают.
2) Существует параллелограмм, который не является прямоугольником.
3) Сумма углов тупоугольного треугольника равна 180°.
Проверим каждое из утверждений.
1) «Центры вписанной и описанной окружностей равнобедренного треугольника совпадают» — неверно, верным будет являтся утверждение: «Центры вписанной и описанной окружностей равностороннего треугольника совпадают».
2) «Существует параллелограмм, который не является прямоугольником» — верно, т. к. прямоугольник — частный случай параллелограмма.
3) «Сумма углов тупоугольного треугольника равна 180°» — верно, по свойству углов треугольника.
Какие из данных утверждений верны? Запишите их номера.
1) Каждая из биссектрис равнобедренного треугольника является его высотой.
2) Диагонали прямоугольника равны.
3) У любой трапеции основания параллельны.
Проверим каждое из утверждений.
1) «Каждая из биссектрис равнобедренного треугольника является его высотой» — неверно, верным будет являться утверждение: «Каждая из биссектрис равностороннего треугольника является его высотой».
2) «Диагонали прямоугольника равны» — верно по свойству диагоналей прямоугольника.
3) «У любой трапеции основания параллельны» — верно по определению трапеции.
Какие из данных утверждений верны? Запишите их номера.
1) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
2) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны.
3) У равнобедренного треугольника есть центр симметрии.
Проверим каждое из утверждений.
1) «Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности» — неверно, т.к. для того, чтобы утверждать пересекаются окружности или нет, нужно ещё знать взаимное положение их центров.
2) «Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны» — верно; по признаку параллельных прямых.
3) «У равнобедренного треугольника есть центр симметрии» — неверно, верым будет утверждение: «У равнобедренного треугольника есть ось симметрии».
Какие из данных утверждений верны? Запишите их номера.
1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
3) Сумма квадратов диагоналей прямоугольника равна сумме квадратов всех его сторон.
Проверим каждое из утверждений.
1) «Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой» — верно: это аксиома планиметрии.
2) «Треугольник со сторонами 1, 2, 4 существует» — неверно: для того, чтобы существовал треугольник, сумма любых его двух сторон должна быть больше третьей стороны.
3) «Сумма квадратов диагоналей прямоугольника равна сумме квадратов всех его сторон.» — верно, по свойству прямоугольника.
Какие из данных утверждений верны? Запишите их номера.
1) Вокруг любого треугольника можно описать окружность.
3) Площадь треугольника не превышает произведения двух его сторон.
Проверим каждое из утверждений.
1) «Вокруг любого треугольника можно описать окружность» — верно, по свойству треугольника.
3) «Площадь треугольника не превышает произведения двух его сторон» — верно, поскольку площадь треугольника может быть найдена по формуле: где
и
— стороны треугольника, а
— угол между ними и
Какие из данных утверждений верны? Запишите их номера.
1) Против большей стороны треугольника лежит меньший угол.
2) Любой квадрат можно вписать в окружность.
3) Площадь трапеции равна произведению средней линии на высоту.
Проверим каждое из утверждений.
1) «Против большей стороны треугольника лежит меньший угол» — неверно, против большей стороны треугольника лежит больший угол.
2) «Любой квадрат можно вписать в окружность» — верно, по свойству квадрата.
3) «Площадь трапеции равна произведению средней линии на высоту» — верно, по свойству трапеции.
Какие из данных утверждений верны? Запишите их номера.
1) У равнобедренного треугольника есть ось симметрии.
2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
3) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
Проверим каждое из утверждений.
1) «У равнобедренного треугольника есть ось симметрии» — верно, эта ось совпадает с биссектрисой, проведённой к основанию.
2) «Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат» — верно, т.к. среди всех параллелограммов только в квадрате диагонали равны и перпендикулярны.
3) «Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности» — неверно, т. к. для того, чтобы сказать пересекаются окружности или нет, нужно знать взаимное положение их центров.
Какие из данных утверждений верны? Запишите их номера.
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
Проверим каждое из утверждений.
1) «Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой» — верно: это аксиома планиметрии.
2) «Треугольник со сторонами 1, 2, 4 существует» — неверно: для того, чтобы существовал треугольник, сумма любых его двух сторон должна быть больше третьей стороны.
3) «Если в ромбе хотя бы 2 угла равны 90°, то такой ромб — квадрат» — верно: в этом случае противоположный угол тоже будет равен 90°, а значит, и два других (равных) угла будут равны по 90°.
Какие из данных утверждений верны? Запишите их номера.
1) Против большей стороны треугольника лежит больший угол.
2) Любой прямоугольник можно вписать в окружность.
3) Площадь треугольника меньше произведения двух его сторон.
Проверим каждое из утверждений.
1) «Против большей стороны треугольника лежит больший угол» — верно, по свойству треугольника.
2) «Любой прямоугольник можно вписать в окружность» — верно; выпуклый четырёхугольник можно вписать в окружность тогда и только тогда, когда сумма противоположных углов этого четырёхугольника равна 180°.
3) «Площадь треугольника меньше произведения двух его сторон» — верно, поскольку площадь треугольника можно вычислить по формуле , где
и
— стороны треугольника, а
— угол между этими сторонами. Так как
не может быть больше 1, то и
не может превышать полупроизведения сторон.
Укажите номер верного утверждения если в параллелограмме две стороны равны то такой параллелограмм
Какие из следующих утверждений верны?
1) Диагонали ромба равны.
2) Отношение площадей подобных треугольников равно коэффициенту подобия.
3) Серединные перпендикуляры к сторонам треугольника пересекаются в центре его описанной окружности.
Какие из следующих утверждений верны?
1) Если в параллелограмме две соседние стороны равны, то такой параллелограмм является ромбом.
2) Существует прямоугольник, диагонали которого взаимно перпендикулярны.
3) Сумма углов любого треугольника равна 360 .
Какие из следующих утверждений верны?
1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой.
2) Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны.
3) Смежные углы равны.
Какие из следующих утверждений верны?
1) Существует прямоугольник, диагонали которого взаимно перпендикулярны.
2) Все квадраты имеют равные площади.
3) Один из углов треугольника всегда не превышает 60.
Какие из следующих утверждений верны?
1) Центр описанной около треугольника окружности всегда лежит внутри этого треугольника.
2) В параллелограмме есть два равных угла.
3) Площадь прямоугольного треугольника равна произведению длин его катетов.
Какие из следующих утверждений верны?
1) Любые два равносторонних треугольника подобны.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) Все диаметры окружности равны между собой.
Какие из следующих утверждений верны?
1) У любой трапеции боковые стороны равны.
2) Серединные перпендикуляры к сторонам треугольника пересекаются в центре его описанной окружности.
3) Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны.
Какие из следующих утверждений верны?
1) Диагонали прямоугольника точкой пересечения делятся пополам.
2) Точка пересечения двух окружностей равноудалена от центров этих окружностей.
3) Площадь любого параллелограмма равна произведению длин его сторон.
Какие из следующих утверждений верны?
1) Угол, опирающийся на диаметр окружности, прямой.
2) Если три угла одного треугольника равны соответственно трём углам другого треугольника, то такие треугольники равны.
3) Отношение площадей подобных треугольников равно коэффициенту подобия.
Какие из следующих утверждений верны?
1) Каждая из биссектрис равнобедренного треугольника является его высотой.
2) Если диагонали параллелограмма равны, то это ромб.
3) Существует прямоугольник, диагонали которого взаимно перпендикулярны.
Какие из следующих утверждений верны?
1) Через заданную точку плоскости можно провести единственную прямую.
2) Любые два равносторонних треугольника подобны.
3) Угол, опирающийся на диаметр окружности, прямой.
Какие из следующих утверждений верны?
1) Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны.
2) Площадь ромба равна произведению двух его смежных сторон на синус угла между ними.
Укажите номер верного утверждения если в параллелограмме две стороны равны то такой параллелограмм
Какие из следующих утверждений верны?
1) Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
2) Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.
3) Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.
4) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.» — верно, если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
2) «Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.» — верно, если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.
3) «Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.» — неверно, стороны параллелограмма параллельны и образуют односторонние углы, а сумма односторонних углов равна 180°.
4) «Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.» — верно, сумма углов выпуклого четырехугольника равна 360°.
Какое из следующих утверждений верно?
1) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
2) Смежные углы равны.
3) Каждая из биссектрис равнобедренного треугольника является его высотой.
Проверим каждое из утверждений.
1) «Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.» — верно, если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
2) «Смежные углы равны.» — неверно, сумма смежных углов равна 180°.
3) «Каждая из биссектрис равнобедренного треугольника является его высотой.» — неверно, только одна биссектриса равнобедренного треугольника является его высотой.
Какие из данных утверждений верны? Запишите их номера.
1) Вокруг любого треугольника можно описать окружность.
2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
3) Площадь трапеции равна произведению средней линии на высоту.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Вокруг любого треугольника можно описать окружность» — верно, по свойству треугольника.
2) «Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат» — верно; из всех параллелограммов только в квадрате диагонали равны и перпендикулярны одновременно.
3) «Площадь трапеции равна произведению средней линии на высоту» — верно, по свойству трапеции.
Какие из данных утверждений верны? Запишите их номера.
1) У равнобедренного треугольника есть ось симметрии.
2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
3) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
Проверим каждое из утверждений.
1) «У равнобедренного треугольника есть ось симметрии» — верно, эта ось совпадает с биссектрисой, проведённой к основанию.
2) «Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат» — верно, т.к. среди всех параллелограммов только в квадрате диагонали равны и перпендикулярны.
3) «Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности» — неверно, т. к. для того, чтобы сказать пересекаются окружности или нет, нужно знать взаимное положение их центров.
Укажите номера верных утверждений.
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
3) Если в ромбе один из углов равен 90°, то такой ромб — квадрат.
4) В любом параллелограмме диагонали равны.
1) «Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой» — верно, это аксиома планиметрии.
2) Треугольник со сторонами 1, 2, 4 существует» — неверно: для того, чтобы существовал треугольник, сумма длин любых его двух сторон должна быть больше длины третьей стороны.
3) «Если в ромбе один из углов равен 90°, то такой ромб — квадрат» — верно, в этом случае противоположный угол тоже будет равен 90°, а значит и два других (равных) угла будут равны по 90°.
4) «В любом параллелограмме диагонали равны» — не верно, диагонали в произвольном параллелограмме не равны.
Укажите номера верных утверждений.
1) В тупоугольном треугольнике все углы тупые.
2) В любом параллелограмме диагонали точкой пересечения делятся пополам.
3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.
Проверим каждое из утверждений.
1) «В тупоугольном треугольнике все углы тупые» — неверно, так как в тупоугольном треугольнике только один угол — тупой.
2) «В любом параллелограмме диагонали точкой пересечения делятся пополам» — верно; это свойство параллелограмма.
3) «Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка» — верно по свойству серединного перпендикуляра.
Какое из следующих утверждений верно?
1) Диагонали параллелограмма равны.
2) Площадь ромба равна произведению его стороны на высоту, проведённую к этой стороне.
3) Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Диагонали параллелограмма равны» — неверно, если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник, т. е. не у каждого параллелограмма диагонали равны.
2) «Площадь ромба равна произведению его стороны на высоту, проведённую к этой стороне» — верно, ромб — частный случай параллелограмма, а площадь параллелограмма равна a · h.
3) «Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны» — неверно, нет такого признака равенства треугольников. Признак равенства треугольников звучит так: «Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны».
Какие из данных утверждений верны? Запишите их номера.
1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
2) Площадь круга меньше квадрата длины его диаметра.
3) Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб.
Проверим каждое из утверждений.
1) «Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны» — неверно; верным будет утверждение: «Если две стороны одного треугольника и угол между ними соответственно равны двум сторонам и углу другого треугольника, то такие треугольники равны».
2) «Площадь круга меньше квадрата длины его диаметра» — верно, поскольку площадь круга равна , а
.
3) «Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб» — неверно; верным являлось бы утверждение «Если в параллелограмме диагонали перпендикулярны, то такой параллелограмм — ромб», но не любой четырёхугольник — параллелограмм.
Диагонали AC и BD параллелограмма ABCD пересекаются в точке O, AC = 12, BD = 20, AB = 7. Найдите DO.
В параллелограмме диагонали точкой пересечения делятся пополам, поэтому DO = 10.
Диагонали AC и BD параллелограмма ABCD пересекаются в точке O, AC = 10, BD = 22, AB = 9. Найдите DO.
В параллелограмме диагонали точкой пересечения делятся пополам. Таким образом, DO = 11.
Какие из следующих утверждений верны?
1) Сумма углов выпуклого четырехугольника равна 180°.
2) Если один из углов параллелограмма равен 60°, то противоположный ему угол равен 120°.
3) Диагонали квадрата делят его углы пополам.
4) Если в четырехугольнике две противоположные стороны равны, то этот четырехугольник — параллелограмм.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Сумма углов выпуклого четырехугольника равна 180°.» — неверно, сумма углов выпуклого n — угольника равна (n – 2)·180°.
2) «Если один из углов параллелограмма равен 60°, то противоположный ему угол равен 120°.» — неверно, в параллелограмме противоположные стороны и противоположные углы равны.
3) «Диагонали квадрата делят его углы пополам.» — верно, Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам, делят углы квадрата пополам. Таким образом, прямоугольные треугольники равны.
4) «Если в четырехугольнике две противоположные стороны равны, то этот четырехугольник — параллелограмм.» — неверно, если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник – параллелограмм.
Какие из следующих утверждений верны?
1. Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.
2. Если точка лежит на биссектрисе угла, то она равноудалена от сторон этого угла.
3. Если диагонали параллелограмма равны, то этот параллелограмм является ромбом.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Рассмотрим каждое из утверждений:
Какое из следующих утверждений верно?
1. Если диагонали параллелограмма равны, то этот параллелограмм является ромбом.
2. Тангенс любого острого угла меньше единицы.
3. Сумма углов равнобедренного треугольника равна 180 градусам.
В ответ запишите номер выбранного утверждения.
Рассмотрим каждое из утверждений:
В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника BMC.
Проведём высоту так, чтобы она проходила через точку
Углы
и
равны друг другу как вертикальные. Диагонали параллелограмма делятся точкой пересечения пополам, следовательно,
Рассмотрим треугольники
и
, они прямоугольные, имеют равные углы и равные гипотенузы, следовательно, эти треугольники равны, а значит равны отрезки
и
. Таким образом,
Площадь параллелограмм равна а площадь треугольника
Приведем другое решение.
Площади треугольников ABM и CBM равны, так как у них общая высота и равные стороны AM и MC. Поэтому площадь треугольника АВС равна двум площадям треугольника BMC. Треугольники АВС и ADC равны по трем сторонам, поэтому их площади равны. Следовательно, площадь параллелограмма равна двум площадям треугольника АВС, а значит, четырем площадям треугольника BMC.