триангуляционный знак что это такое

Землянка

суббота, 7 июля 2012 г.

Триангуляция и геодезические пункты

Триангуляция (в геодезии)

Значение слова «Триангуляция (в геодезии)» в Большой Советской Энциклопедии

Триангуляция (от лат. triangulum — треугольник), один из методов создания сети опорных геодезических пунктов и сама сеть, созданная этим методом; состоит в построении рядов или сетей примыкающих друг к другу треугольников и в определении положения их вершин в избранной системе координат. В каждом треугольнике измеряют все три угла, а одну из его сторон определяют из вычислений путём последовательного решения предыдущих треугольников, начиная от того из них, в котором одна из его сторон получена из измерений. Если сторона треугольника получена из непосредственных измерений, то она называется базисной стороной Триангуляция (в геодезии) В прошлом вместо базисной стороны непосредственно измеряли короткую линию, называемую базисом, и от неё путём тригонометрических вычислений через особую сеть треугольников переходили к стороне треугольника Триангуляция (в геодезии) Эту сторону Триангуляция (в геодезии) обычно называют выходной стороной, а сеть треугольников, через которые она вычислена,— базисной сетью. В рядах или сетях Триангуляция (в геодезии) для контроля и повышения их точности измеряют большее число базисов или базисных сторон, чем это минимально необходимо.

Принято считать, что метод Триангуляция (в геодезии) изобрёл и впервые применил В. Снеллиус в 1615—17 при прокладке ряда треугольников в Нидерландах для градусных измерений. Работы по применению метода Триангуляция (в геодезии) для топографических съёмок в дореволюционной России начались на рубеже 18—19 вв. К началу 20 в. метод Триангуляция (в геодезии) получил повсеместное распространение.

Триангуляция (в геодезии) имеет большое научное и практическое значение. Она служит для: определения фигуры и размеров Земли методом градусных измерений; изучения горизонтальных движений земной коры; обоснования топографических съёмок в различных масштабах и целях; обоснования различных геодезических работ при изыскании, проектировании и строительстве крупных инженерных сооружений, при планировке и строительстве городов и т.д.

При построении Триангуляция (в геодезии) исходят из принципа перехода от общего к частному, от крупных треугольников к более мелким. В связи с этим Триангуляция (в геодезии) подразделяется на классы, отличающиеся точностью измерений и последовательностью их построения. В малых по территории странах Триангуляция (в геодезии) высшего класса строят в виде сплошных сетей треугольников. В государствах с большой территорией (СССР, Канада, КНР, США и др.) Триангуляция (в геодезии) строят по некоторой схеме и программе. Наиболее стройная схема и программа построения Триангуляция (в геодезии) применяется в СССР.

Государственная Триангуляция (в геодезии) в СССР делится на 4 класса (рис.). Государственная Триангуляция (в геодезии) СССР 1-го класса строится в виде рядов треугольников со сторонами 20—25 км, расположенных примерно вдоль меридианов и параллелей и образующих полигоны с периметром 800—1000 км. Углы треугольников в этих рядах измеряют высокоточными теодолитами, с погрешностью не более ± 0,7«. В местах пересечения рядов Триангуляция (в геодезии) 1-го класса измеряют базисы при помощи мерных проволок (см. Базисный прибор), причём погрешность измерения базиса не превышает 1 : 1000000 доли его длины, а выходные стороны базисных сетей определяются с погрешностью около 1 : 300 000. После изобретения высокоточных электрооптических дальномеров стали измерять непосредственно базисные стороны с погрешностью не более 1 : 400 000. Пространства внутри полигонов Триангуляция (в геодезии) 1-го класса покрывают сплошными сетями треугольников 2-го класса со сторонами около 10—20 км, причём углы в них измеряют с той же точностью, как и в Триангуляция (в геодезии) 1-го класса. В сплошной сети Триангуляция (в геодезии) 2-го класса внутри полигона 1-го класса измеряется также базисная сторона с указанной выше точностью. На концах каждой базисной стороны в Триангуляция (в геодезии) 1-го и 2-го классов выполняют астрономические определения широты и долготы с погрешностью не более ± 0,4«, а также азимута с погрешностью около ± 0,5«. Кроме того, астрономические определения широты и долготы выполняют и на промежуточных пунктах рядов Триангуляция (в геодезии) 1-го класса через каждые примерно 100 км, а по некоторым особо выделенным рядам и значительно чаще.

В практике СССР допускается вместо Триангуляция (в геодезии) применять метод полигонометрии. При этом ставится условие, чтобы при построении опорной геодезической сети тем и др. методом достигалась одинаковая точность определения положения пунктов земной поверхности.

Вершины треугольников Триангуляция (в геодезии) обозначаются на местности деревянными или металлическими вышками высотой от 6 до 55 м в зависимости от условий местности (см. Сигнал геодезический). Пункты Триангуляция (в геодезии) в целях долговременной их сохранности на местности закрепляются закладкой в грунт особых устройств в виде металлических труб или бетонных монолитов с вделанными в них металлическими марками (см. Центр геодезический), фиксирующими положение точек, для которых даются координаты в соответствующих каталогах.

Координаты пунктов Триангуляция (в геодезии) определяют из математической обработки рядов или сетей Триангуляция (в геодезии) При этом реальную Землю заменяют некоторым референц-эллипсоидом, на поверхность которого приводят результаты измерения углов и базисных сторон Триангуляция (в геодезии) В СССР принят референц-эллипсоид Красовского (см. Красовского эллипсоид). Построение Триангуляция (в геодезии) и её математическая обработка приводят к созданию на всей территории страны единой системы координат, позволяющей ставить топографо-геодезические работы в разных частях страны одновременно и независимо друг от друга. При этом обеспечивается соединение этих работ в одно целое и создание единой общегосударственной топографической карты страны в установленном масштабе.

Лит.: Красовский Ф. Н., Данилов В. В., Руководство по высшей геодезии, 2 изд., ч. 1, в. 1—2, М., 1938—39; Инструкция о построении государственной геодезической сети СССР, 2 изд., М., 1966.

Источник

Триангуляционный знак что это такое

Триангул я ция (от лат. triangulum — треугольник) — один из методов создания опорной геодезической сети.

Состоит в построении рядов или сетей примыкающих друг к другу треугольников и в определении положения их вершин в избранной системе координат. В каждом треугольнике измеряют все три угла, а одну из его сторон определяют из вычислений путём последовательного решения предыдущих треугольников, начиная от того из них, в котором одна из его сторон получена из измерений. Если сторона треугольника получена из непосредственных измерений, то она называется базисной стороной триангуляции. В рядах или сетях триагуляции для контроля и повышения их точности измеряют большее число базисов или базисных сторон, чем это минимально необходимо.

Принято считать, что метод триангуляции изобрёл и впервые применил В. Снеллиус в 1615–17 гг. при прокладке ряда треугольников в Нидерландах для градусных измерений. Работы по применению метода триангуляции для топографических съёмок в дореволюционной России начались на рубеже 18–19 вв. К началу 20 в. метод триангуляции получил повсеместное распространение.

Триангуляция имеет большое научное и практическое значение. Она служит для: определения фигуры и размеров Земли методом градусных измерений; изучения горизонтальных движений земной коры; обоснования топографических съёмок в различных масштабах и целях; обоснования различных геодезических работ при изыскании, проектировании и строительстве крупных инженерных сооружений, при планировке и строительстве городов и т.д.

триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такоеПри построении триангуляции в государственной геодезической сети (ГГС) исходят из принципа перехода от общего к частному, от крупных треугольников к более мелким. В связи с этим триангуляция подразделяется на классы, отличающиеся точностью измерений и последовательностью их построения. В малых по территории странах триангуляция высшего класса строят в виде сплошных сетей треугольников. В государствах с большой территорией (Россия, Китай, Индия, США, Канада и др.) триангуляцию строят по некоторой схеме и программе.

Государственная триангуляция РФ делится на 4 класса (рис.).

Государственная триангуляция 1-го класса строится в виде рядов треугольников со сторонами 20–25 км, расположенных примерно вдоль меридианов и параллелей и образующих полигоны с периметром 800–1000 км. Углы треугольников в этих рядах измеряют высокоточными теодолитами, с погрешностью не более ± 0,7″. В местах пересечения рядов триангуляции 1-го класса измеряют базисы при помощи мерных проволок, причём погрешность измерения базиса не превышает 1 : 1000000 доли его длины, а выходные стороны базисных сетей определяются с погрешностью около 1 : 300 000. После изобретения высокоточных электрооптических дальномеров стали измерять непосредственно базисные стороны с погрешностью не более 1 : 400 000.

Пространства внутри полигонов триангуляции 1-го класса покрывают сплошными сетями треугольников 2-го класса со сторонами около 10–20 км, причём углы в них измеряют с той же точностью, как и в 1-ом классе. В сплошной сети триангуляции 2-го класса внутри полигона 1-го класса измеряется также базисная сторона с указанной выше точностью. На концах каждой базисной стороны 1-го и 2-го классов выполняют астрономические определения широты и долготы с погрешностью не более ± 0,4«, а также азимута с погрешностью около ± 0,5«. Кроме того, астрономические определения широты и долготы выполняют и на промежуточных пунктах рядов триангуляции 1-го класса через каждые примерно 100 км, а по некоторым особо выделенным рядам и значительно чаще.

В практике допускается вместо триангуляции применять метод полигонометрии. При этом ставится условие, чтобы при построении опорной геодезической сети тем и др. методом достигалась одинаковая точность определения положения пунктов земной поверхности.

Вершины треугольников триангуляции. обозначаются на местности деревянными или металлическими вышками высотой от 6 до 55 м в зависимости от условий местности (см. Сигнал геодезический). Пункты триангуляции в целях долговременной их сохранности на местности закрепляются закладкой в грунт особых устройств в виде металлических труб или бетонных монолитов с вделанными в них металлическими марками (см. Центр геодезический), фиксирующими положение точек, для которых даются координаты в соответствующих каталогах.

Координаты пунктов триангуляции определяют из математической обработки рядов или сетей. Построение триангуляции и её математическая обработка приводят к созданию на всей территории страны единой системы координат, позволяющей ставить топографо-геодезические работы в разных частях страны одновременно и независимо друг от друга. При этом обеспечивается соединение этих работ в одно целое и создание единой общегосударственной топографической карты страны в установленном масштабе.

Источник

Триангуляция

триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое

Полезное

Смотреть что такое «Триангуляция» в других словарях:

ТРИАНГУЛЯЦИЯ — (позд. лат., от лат. triangalus треугольник.). Тригонометрическое действие, при посредстве которого снимают план с известной местности, разделивши ее на треугольники, которые вычисляются при помощи тригонометрических формул. Словарь иностранных… … Словарь иностранных слов русского языка

Триангуляция — (геодезия) один из методов создания сети опорных геодезических пунктов и сама сеть. В математике Триангуляция (топология) разбиение топологического пространства на симплексы. Триангуляция Делоне … Википедия

Триангуляция — (от лат. triangulum треугольник * a. triangulation, survey by triangulation; н. Triangulation; ф. triangulation; и. tciangulacion) один из методов создания сети опорных геодезич. пунктов, заключающийся в построении рядов или сетей из… … Геологическая энциклопедия

ТРИАНГУЛЯЦИЯ — ТРИАНГУЛЯЦИЯ, см. тригонометрия. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

триангуляция — Метод построения геодезической сети в виде треугольников, в которых измерены их углы и некоторые из сторон [ГОСТ 22268 76] триангуляция Метод определения планового положения геодезических пунктов путём построения на местности системы смежных или… … Справочник технического переводчика

ТРИАНГУЛЯЦИЯ — (от лат. triangulum треугольник) метод определения положения геодезических пунктов построением на местности систем смежно расположенных треугольников, в которых измеряют длину одной стороны (по базису) и углы, а длины других сторон получают… … Большой Энциклопедический словарь

ТРИАНГУЛЯЦИЯ — (тригонометрическая съемка), в навигации и топографической съемке метод определения расстояния. Площадь съемки делится на треугольники. Затем ТЕОДОЛИТОМ измеряют основание треугольника и прилежащие углы. Расстояния от концов основания до… … Научно-технический энциклопедический словарь

ТРИАНГУЛЯЦИЯ — ТРИАНГУЛЯЦИЯ, триангуляции, мн. нет, жен. (от лат. triangulus треугольник). 1. Вычисление углов и протяжений методами тригонометрии (мат.). 2. Определение взаимного расположения точек на поверхности при помощи построения сети треугольников… … Толковый словарь Ушакова

ТРИАНГУЛЯЦИЯ — (Triangulation) наиболее точный прием определения взаимного расположения точек на земной поверхности. При Т. выбираются на открытых и возвышенных местах опорные пункты и закрепляются постройкой специальных знаков. Стороны между знаками образуют… … Морской словарь

ТРИАНГУЛЯЦИЯ — горизонтальная съемка расположения вершин сети треугольников путем измерения длины одной стороны базиса и измерения всех углов. Т. применяется для точной съемки больших участков земной поверхности или для определения длины дуги меридиана или… … Технический железнодорожный словарь

триангуляция — сущ., кол во синонимов: 2 • аэротриангуляция (1) • стереотриангуляция (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Источник

Триангуляция (в геодезии)

Т. имеет большое научное и практическое значение. Она служит для: определения фигуры и размеров Земли методом градусных измерений; изучения горизонтальных движений земной коры; обоснования топографических съёмок в различных масштабах и целях; обоснования различных геодезических работ при изыскании, проектировании и строительстве крупных инженерных сооружений, при планировке и строительстве городов и т.д.

При построении Т. исходят из принципа перехода от общего к частному, от крупных треугольников к более мелким. В связи с этим Т. подразделяется на классы, отличающиеся точностью измерений и последовательностью их построения. В малых по территории странах Т. высшего класса строят в виде сплошных сетей треугольников. В государствах с большой территорией (СССР, Канада, КНР, США и др.) Т. строят по некоторой схеме и программе. Наиболее стройная схема и программа построения Т. применяется в СССР.

Вершины треугольников Т. обозначаются на местности деревянными или металлическими вышками высотой от 6 до 55 м в зависимости от условий местности (см. Сигнал геодезический ). Пункты Т. в целях долговременной их сохранности на местности закрепляются закладкой в грунт особых устройств в виде металлических труб или бетонных монолитов с вделанными в них металлическими марками (см. Центр геодезический ), фиксирующими положение точек, для которых даются координаты в соответствующих каталогах.

Лит.: Красовский Ф. Н., Данилов В. В., Руководство по высшей геодезии, 2 изд., ч. 1, в. 1‒2, М., 1938‒39; Инструкция о построении государственной геодезической сети СССР, 2 изд., М., 1966.

Источник

Алгоритм триангуляции Делоне методом заметающей прямой

Доброго времени суток!

В этой статье я подробно опишу алгоритм, который у меня получился в результате использования идеи «заметающей прямой» для построения триангуляции Делоне на плоскости. В нем есть несколько идей, которые я нигде не встречал, когда читал статьи про триангуляцию.
Возможно, кто-то тоже найдет их необычными. Я постараюсь сделать все в лучших традициях и включить в рассказ следующие вещи: описание используемых структур данных, описание шагов алгоритма, доказательство корректности, временные оценки, а также сравнение с итеративным алгоритмом, использующим kD-дерево.

Определения и постановка задачи

Триангуляция

Говорят, что на множестве точек на плоскости задана триангуляция, если некоторые пары точек соединены ребром, любая конечная грань в получившемся графе образует треугольник, ребра не пересекаются, и граф максимален по количеству ребер.

триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое

Триангуляция Делоне

Триангуляцией Делоне называется такая триангуляция, в которой для любого треугольника верно, что внутри описанной около него окружности не находится точек из исходного множества.

триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое

Замечание: для заданного множества точек, в котором никакие 4 точки не находятся на одной окружности, существует ровно одна триангуляция Делоне.

Условие Делоне

Пусть на множестве точек задана триангуляция. Будем говорить, что некоторое подмножество точек удовлетворяет условию Делоне, если триангуляция, ограниченная на это подмножество, является триангуляцией Делоне для него.

Критерий для триангуляции Делоне

Выполнение условия Делоне для всех точек, образующих четырехугольник в триангуляции, эквивалентно тому, что данная триангуляция является триангуляцией Делоне.

Замечание: для невыпуклых четырехугольников условие Делоне всегда выполнено, а для выпуклых четырехугольников (вершины которого не лежат на одной окружности) существует ровно 2 возможные триангуляции (одна из которых является триангуляцией Делоне).

триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое

Задача заключается в том, чтобы для заданного множества точек построить триангуляцию Делоне.

Описание алгоритма

Видимые точки и видимые ребра

Пусть задана минимальная выпуклая оболочка (далее МВО) конечного множества точек (ребра, соединяющие некоторые из точек так, чтобы они образовывали многоугольник, содержащий все точки множества) и точка A, лежащая вне оболочки. Тогда точка плоскости называется видимой для точки А, если отрезок, соединяющий ее с точкой А, не пересекает МВО.

Ребро МВО называется видимым для точки А, если его концы видимы для А.

На следующей картинке красным помечены ребра, видимые для красной точки:

триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое

Замечание: контур триангуляции Делоне является МВО для точек, на которых построена.

Замечание 2: в алгоритме видимые для добавляемой точки А ребра образуют цепочку, то есть несколько подряд идущих ребер МВО

Хранение триангуляции в памяти

Есть некоторые стандартные способы, неплохо описанные в книге Скворцова [1]. Ввиду специфики алгоритма, я предложу свой вариант. Так как хочется проверять 4-угольники на условие Делоне, то рассмотрим их строение. Каждый 4-угольник в триангуляции представляет из себя 2 треугольника, имеющих общее ребро. У каждого ребра есть ровно 2 треугольника, прилегающих к нему. Таким образом, каждый четырехугольник в триангуляции порождается ребром и двумя вершинами, находящимися напротив ребра в прилегающих треугольниках.
Так как по ребру и двум вершинам восстанавливаются два треугольника и их смежность, то по всем таким структурам мы сможем восстановить триангуляцию. Соответственно предлагается хранить ребро с двумя вершинами в множестве и выполнять поиск по ребру (упорядоченной паре вершин).

триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое

Алгоритм

Идея заметающей прямой заключается в том, что все точки сортируются по одному направлению, а затем по очереди обрабатываются.

Проверка условия Делоне

Способы проверки четырехугольников на условие Делоне можно найти в той же книжке [1]. Подмечу лишь, что при выборе метода с тригонометрическими функциями оттуда при неаккуратной реализации могут получаться отрицательные значения синусов, есть смысл брать их по модулю.

Поиск видимых ребер

Осталось понять, как эффективно находить видимые ребра. Заметим, что предыдущая добавленная точка S находится в МВО на текущей итерации, так как имеет наибольшую координату триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое, а также видима для текущей точки. Тогда, замечая, что концы видимых ребер образуют непрерывную цепочку видимых точек, мы можем идти от точки S в обе стороны по МВО и собирать ребра, пока они видимы (видимость ребра проверяется с помощью векторного произведения). Таким образом удобно хранить МВО как двусвязный список, на каждой итерации удаляя видимые ребра и добавляя 2 новых из рассматриваемой точки.

триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое

Визуализация работы алгоритма

Две красные точки — добавляемая и предыдущая. Красные ребра в каждый момент составляют стек рекурсии из шага (4):

триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое

Корректность алгоритма

Чтобы доказать корректность алгоритма, достаточно доказать сохранение инварианта в шагах (3) и (4).

Шаг (3)

После шага (3), очевидно, получится некоторая триангуляция текущего множества точек.

Шаг (4)

В процессе выполнения шага (4) все четырехугольники, не удовлетворяющие условию Делоне, находятся в стеке рекурсии (следует из описания), а значит, по окончании шага (4) все четырехугольники удовлетворяют условию Делоне, то есть действительно построена триангуляция Делоне. Тогда осталось доказать, что процесс в шаге (4) когда-нибудь закончится. Это следует из того, что все ребра, добавленные при перестроении, исходят из текущей рассматриваемой вершины (то есть на шаге триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такоеих не больше, чем триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое) и из того, что после добавления этих ребер мы не будем рассматривать четырехугольники, порожденные ими (см. предыдущее замечание), а значит, добавим не более одного раза.

Временная сложность

В среднем на равномерном, нормальном распределениях алгоритм работает довольно неплохо (результаты приведены ниже в табличке). Есть предположение, что время его работы составляет триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое. В худшем случае имеет место оценка триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое.

триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое

Давайте разберем время работы по частям и поймем, какая из них оказывает самое большое влияние на итоговое время:

Сортировка по направлению

Для сортировки будем использовать оценку триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое.

Поиск видимых ребер

Для начала покажем, что время, суммарно затраченное на поиск видимых ребер, есть триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое. Заметим, что на каждой итерации мы находим все видимые ребра и еще 2 (первые не видимые) за линейное время. В шаге (3) мы добавляем в МВО новые 2 ребра. Таким образом, всего в меняющейся на протяжении алгоритма МВО побывает не более триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такоеребер, значит, и различных видимых ребер будет не более триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое. Еще мы найдем триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такоеребер, не являющихся видимыми. Таким образом, в общей сложности найдется не более триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такоеребер, что соответствует времени триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое.

Построение новых треугольников

Суммарное время на построение треугольников из шага (3) с уже найденными видимыми ребрами, очевидно, триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое.

Перестроение триангуляции

Осталось разобраться с шагом (4). Сначала заметим, что проверка условия Делоне и перестроение в случае его не выполнения являются довольно дорогими действиями (хоть и работают за триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое). Только на проверку условия Делоне может уйти около 28 арифметических операций. Посмотрим на среднее количество перестроений в течение этого шага. Практические результаты на некоторых распределениях приведены ниже. По ним очень хочется сказать, что среднее количество перестроений растет с логарифмической скоростью, однако оставим это как лишь предположение.

триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое

Здесь еще хочется подметить, что от направления, вдоль которого производится сортировка, может сильно варьироваться среднее число перестроений на точку. Так на миллионе равномерно распределенных на длинном низком прямоугольнике с отношением сторон 100000:1 это число варьируется от 1.2 до 24 (эти значения достигаются при сортировке данных по горизонтали и вертикали соответственно). Поэтому я вижу смысл выбирать направление сортировки произвольным образом (в данном примере при произвольном выборе в среднем получалось около 2 перестроений) или выбрать его вручную, если данные заранее известны.

Таким образом, основное время работы программы обычно уходит на шаг (4). Если же он выполняется быстро, то есть смысл задуматься над ускорением сортировки.

Худший случай

В худшем случае на триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое-ой итерации происходит триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такоерекурсивный вызов в шаге (4), то есть, суммируя по всем i, получаем асимптотику в худшем случае триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое. Следующая картинка иллюстрирует красивый пример, на котором программа может работать долго (1100 перестроений в среднем при добавлении новой точки при входных данных в 10000 точек).

триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое

Сравнение с итеративным алгоритмом построения триангуляции Делоне с использованием kD-дерева

Описание итеративного алгоритма

Коротко опишу вышеуказанный алгоритм. При поступлении очередной точки мы с помощью kD-дерева (советую почитать про него где-нибудь, если вы не знаете) находим довольно близкий к ней уже построенный треугольник. Затем обходом в глубину ищем треугольник, в который попадает сама точка. Достраиваем ребра в вершины найденного треугольника и фактически выполняем шаг (4) из нашего алгоритма для новых четырехугольников. Так как точка может быть вне триангуляции, то для упрощения предлагается накрыть все точки большим треугольником (построить его заранее), это решит проблему.

Сходство алгоритмов

триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое

Различия алгоритмов

В итеративном алгоритме локализация точки (поиск нужного треугольника) происходит в среднем за триангуляционный знак что это такое. Смотреть фото триангуляционный знак что это такое. Смотреть картинку триангуляционный знак что это такое. Картинка про триангуляционный знак что это такое. Фото триангуляционный знак что это такое, на вышеуказанных распределениях в среднем происходит 3 перестроения (как показано в [1]) при условии произвольного порядка подачи точек. Таким образом заметающая прямая выигрывает время у итеративного алгоритма в локализации, но проигрывает его в перестроениях (которые, напомню, довольно тяжелые). Ко всему прочему итеративный алгоритм работает в режиме онлайн, что также является его отличительной особенностью.

Заключение

Здесь я просто покажу некоторые интересные триангуляции, получившиеся в результате работы алгоритма.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *