Ламповыми машинами 50 х годов

Поколения ЭВМ

Первое поколение ЭВМ — ламповые машины 50-х годов. Скорость счёта самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду. Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), они, главным образом, использовались для инженерных и научных расчётов, не связанных с переработкой больших объёмов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд, поэтому программирование в те времена было доступно немногим.

Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годов

К концу 40-х гг. XX в., когда вошли в строй первые большие электронные компьютеры, специалисты начали искать замену громоздким и хрупким, часто выходившим из строя лампам, на которых они были построены. В 1948 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надёжнее, менее энергоёмкими (рис. 2.2). Быстродействие большинства машин достигло нескольких сотен тысяч операций в секунду. Объём внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Это способствовало созданию на ЭВМ информационно-справочных, поисковых систем, нуждающихся в длительном хранении больших объёмов информации. Во времена второго поколения ЭВМ активно начали развиваться языки программирования высокого уровня, одним из первых среди которых был Фортран (Fortran — сокращение от англ. FORmula TRANslation — трансляция формулы).

Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годов

Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годов Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годовКлючевыми фигурами среди физиков, занимавшихся изучением полупроводников, стали американские учёные Джон Бардин (19081991), Уолтер Браттейн (1902-1987), Уильям Брэдфорд Шокли (1910-1989). В 1948 году в газете «Нью-Йорк тайме» была напечатана короткая заметка, в которой сообщалось об изобретении ими нового устройства — транзистора. Эта информация прошла практически незамеченной, мало кто смог в то время оценить её по достоинству. Позже транзистор был признан одним из важнейших изобретений века, а его изобретатели получили Нобелевскую премию по физике.

Благодаря транзистору — германиевому кристаллу величиной с булавочную головку, заключённому в металлический цилиндр длиной около сантиметра, — электроника ступила на путь миниатюризации: один транзистор был способен заменить 40 электронных ламп.

Хотя транзистор был выдающимся научным изобретением, он не сразу получил широкое практическое применение в вычислительной технике. Германий, из которого изготавливали первые транзисторы, — довольно редкий химический элемент, поэтому стоимость транзисторов была очень высокой. Резко снизить стоимость транзисторов удалось только в середине 50-х гг. XX в.: в 1954 году был изготовлен первый транзистор из кремния — основного компонента обычного песка, — одного из самых распространённых на Земле химических элементов.

Источник

Урок 7
§6. История развития вычислительной техники

Содержание урока:

Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годов6.3. Поколения ЭВМЛамповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годов
6.2. История развития устройств для вычисленийЛамповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годов6.3. Поколения ЭВМ (продолжение)

Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годов

6.3. Поколения ЭВМ

Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годовПервое поколение ЭВМ — ламповые машины 50-х годов. Скорость счёта самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду. Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), они, главным обра-зом, использовались для инженерных и научных расчётов, не связанных с переработкой больших объёмов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд, поэтому программирование в те времена было доступно немногим.

Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годов

Рис. 2.1. ЭВМ первого поколения МЭСМ

К концу 40-х гг. XX в., когда вошли в строй первые большие электронные компьютеры, специалисты начали искать замену громоздким и хрупким, часто выходившим из строя лампам, на которых они были построены. В 1948 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надёжнее, менее энергоёмкими (рис. 2.2). Быстродействие большинства машин достигло нескольких сотен тысяч операций в секунду. Объём внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Это способствовало созданию на ЭВМ информационно-справочных, поисковых систем, нуждающихся в длительном хранении больших объёмов информации.

Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годовВо времена второго поколения ЭВМ активно начали развиваться языки программирования высокого уровня, одним из первых среди которых был Фортран (Fortran — сокращение от англ. FORmula TRANslation — трансляция формулы).

Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годов

Рис. 2.2. ЭВМ второго поколения БЭСМ-6

Благодаря транзистору — германиевому кристаллу величиной с булавочную головку, заключённому в металлический цилиндр длиной около сантиметра, — электроника ступила на путь миниатюризации: один транзистор был способен заменить 40 электронных ламп.

Хотя транзистор был выдающимся научным изобретением, он не сразу получил широкое практическое применение в вычислительной технике. Германий, из которого изготавливали первые транзисторы, — довольно редкий химический элемент, поэтому стоимость транзисторов была очень высокой. Резко снизить стоимость транзисторов удалось только в середине 50-х гг. XX в.: в 1954 году был изготовлен первый транзистор из кремния — основного компонента обычного песка, — одного из самых распространённых на Земле химических элементов.

Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годов

Рис. 2.3. Рабочее помещение с установленной ЕС-1060

В этот период были созданы операционные системы (ОС), позволявшие управлять большим количеством внешних устройств и выполнять на одной машине несколько программ одновременно. Широкое распространение получили ранее созданные языки программирования. Начали появляться пакеты прикладных программ для решения задач в конкретных областях. Это существенно расширило области применения ЭВМ.

Первая интегральная схема, представлявшая собой кристалл, в котором была размещена целая схема из нескольких транзисторов, была разработана в 1958 г. американским физиком Джеком Килби, удостоенным за это изобретение Нобелевской премии.

Cкачать материалы урока
Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годов

Источник

Ламповые ЭВМ

Компьютеры первого поколения

Проекты и реализация машин «Марк-1», EDSAC и EDVAC в Англии и США, МЭСМ — в СССР заложили основы для развертывания работ по созданию ЭВМ вакуумно-ламповой технологии — серийных ЭВМ первого поколения.

Разработка первой серийной электронной машины UNIVAC (Universal Automatic Computer) начата при­мерно в 1947 г. Д. П. Эккертом и Д. Маучли, основав­шими в декабре того же года фирму Eckert — Mauchly. Первый образец машины (UNIVAC-1) был построен для бюро переписи США и пущен в эксплуатацию весной 1951 г. Вычислительная машина UNIVAC-1 синхронная, последовательного действия, создана на базе ЭВМ ENI АС и EDVAC. Работала с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп. Внутреннее запоминающее устройство емкостью 1000 12-разрядных десятичных чисел было выполнено на 100 ртутных линиях задержки.

Вскоре после ввода в эксплуатацию машины UNIVAC-1 ее разработчики выдвинули первые идеи автоматического программирования. Они сводились, по существу, к тому, чтобы машина сама могла подготавливать такую последовательность команд, которая нужна для решения данной задачи.

Пятидесятые годы — годы расцвета компьютерной техники, годы значительных достижений и нововведений как в архитектурном, так и в научно-техническом отношении. Отличительные особенности в архитектуре современных ЭВМ по сравнению с неймановской архитектурой впервые появились в ЭВМ первого поколения.

Сильным сдерживающим фактором в работе конструкторов ЭВМ начала 50-х гг. было отсутствие быстродействующей памяти. По словам одного из пионеров вычислительной техники Д. Эккерта, в те годы «архитектура машины определялась памятью» [12]. Исследователи сосредоточили свои усилия на запоминающих свойствах ферритовых колец, нанизанных на проволочные матрицы. В 1951 г. в 22-м томе Journal of Ар-plid Physics Д. Форрестер опубликовал статью о применении магнитных сердечников для хранения цифровой информации. В машине «Whirlwind-1» впервые была применена память на магнитных сердечниках. Она представляла собой два куба с 32X32X17 сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля на четность.

В разработку электронных компьютеров включилась фирма IBM. В 1952 г. она выпустила свой первый промышленный электронный компьютер IBM-701, который представлял собой синхронную ЭВМ параллельного действия, содержащую 4000 электронных ламп и 12 000 германиевых диодов. Усовершенствованный вариант машины IBM-701 был выпущен в январе 1956 г. IBM-704 отличалась высокой скоростью рабо­ты, в ней использовались индексные регистры и данные представлялись в форме с плавающей запятой [11].

После ЭВМ IBM-704 была выпущена машина IBM-709, которая в архитектурном плане приближалась к машине второго и третьего поколений. В этой машине впервые была применена косвенная адресация, и впервые появились каналы ввода-вывода.

Вслед за выпущенным первым серийным компьютером UNIVAC-1 фирма Remington-Rand в 1952 г. выпустила ЭВМ UNIVAC-1103, которая работала в 50 раз быстрее. Позже в том компьютере впервые были применены программные прерывания.

В октябре 1952 г. группа сотрудников фирмы Remington-Rand предложила алгебраическую форму записи алгоритмов под названием «сокращенный код», которая интерпретировалась машиной строка за строкой по ходу выполнения программы. Здесь мы с особым удовольствием отметим имя еще одной дамы — офицера военно-морских сил США и руководителя группы программистов, капитана Грейс Хоппер, кото­рая разработала первую программу-компилятор А-0. Эта обслуживающая программа производила трансляцию на машинный язык всей программы, записанной в удобной для обработки алгебраической форме. А позже с ее участием был разработан язык КОБОЛ.

Фирма IBM также сделала первые шаги в области автоматизации программирования, создав в 1953 г. для машины IBM-701 «Систему быстрого кодирования». В 1957 г. группа под руководством Д. Бэкуса завершила работу над ставшим впоследствии популярным первым языком программирования высокого уровня, получившим название ФОРТРАН. Язык, реализованный впервые на ЭВМ IBM-704, способствовал расширению сферы применения компьютеров.

В Великобритании в июле 1951 г. на конференции в Манчестерском университете М. Уилкс представил доклад «Наилучший метод конструирования автоматической машины», который стал пионерской работой по основам микропрограммирования. Предложенный им систематический метод проектирования устройств управления нашел широкое применение. Свою идею микропрограммирования М. Уилкс реали­зовал в 1957 г. при создании машины EDSAC-II. М. Уилкс вместе с Д. Уиллером и С. Гиллом в 1951 г. выпустили первый учебник по программированию «Составление программ для электронных счетных ма­шин» (русский перевод 1953 г.).

В 1951 г. фирмой Ferranti стала серийно выпускаться машина «Марк-1». А через 5 лет фирма Ferranti выпустила ЭВМ «Pegasus», в которой впервые нашла воплощение концепция регистров общего назначения (РОН). Благодаря этой группе регистров устраняется различие между индексными регистрами и аккумуляторами, и поэтому в распоряжении программиста оказывается не один, а несколько регистров — аккумуляторов.

В СССР в 1948 г. проблемы развития вычислительной техники становятся общегосударственной задачей. В ряде организаций страны развернулись работы по созданию серийных ЭВМ первого поколения.

В 1950 г. в Институте точной механики и вычислительной техники (ИТМ и ВТ АН СССР) организован отдел цифровых ЭВМ для разработки и создания большой ЭВМ. Работу этого отдела возглавил С. А. Лебедев (1902—1974). В 1951 г. здесь была спроектирована машина БЭСМ, а в 1952 г. началась ее опытная эксплуатация.

В проекте вначале предполагалось использовать память на трубках Вильямса, но до 1955 г. в качестве элементов памяти в ней использовались ртутные линии задержки. По тем временам БЭСМ была весьма производительной машиной — 8000 оп/с. Она имела трехадресную систему команд, а для упрощения программирования широко применялся метод стандартных подпрограмм, который в дальнейшем положил начало модульному программированию, пакетам прикладных программ. Серийно машина стала выпускаться в 1956 г. под названием БЭСМ-2.

В этот же период в КБ, руководимом М. А. Лесечко, началось проектирование другой ЭВМ, получившей название «Стрела». Осваивать серийное производство этой машины поручено московскому заводу САМ. Главным конструктором стал Ю. Я. Базилевский, а одним из его помощников — Б. И. Рамеев, в дальнейшем конструктор машин серии «Урал». Проблемы серийного производства предопределили некоторые особенности «Стрелы»: невысокое по сравнению с БЭСМ быстродействие, просторный монтаж и т. д. В машине применялись 45-дорожечные магнитные ленты в качестве внешней памяти, а оперативная память — на трубках Вильямса. «Стрела» имела большую разрядность и удобную систему команд.

Первая ЭВМ «Стрела» была установлена в отделении прикладной математики Математического института АН СССР (МИАН), а в конце 1953 г. началось серийное ее производство.

В лаборатории электросхем Энергетического института АН СССР коллектив под руководством И. С. Брука в 1951 г. построил макет небольшой ЭВМ первого поколения под названием М-1. В следующем году здесь была создана вычислительная машина М-2, которая положила начало созданию экономичных машин среднего класса. Одним из ведущих разработчиков данной машины был М. А. Карцев, внесший впоследствии большой вклад в развитие отечественной вычислительной техники. В машине М-2 использовалось 1879 ламп, меньше чем в «Стреле», а средняя производительность составляла 2000 оп/с. Были задействованы три типа памяти: электростатическая на 34 трубках Вильямса, на магнитном барабане и на магнитной ленте с использованием обычного для того времени магнитофона МАГ-8.

В 1955—1956 гг. коллектив лаборатории выпустил малую ЭВМ М-3 с быстродействием 30 оп/с и оперативной памятью на магнитном барабане. Особенность М-3 заключалась в том, что для центрального устройства управления был использован асинхронный принцип работы. Необходимо отметить, что в 1956 г. коллектив И. С. Брука выделился из состава Энергетического института АН СССР и образовал Лабораторию управляющих машин и систем АН СССР, ставшую впоследствии Институтом электронных управляющих машин (ИНЭУМ).

Еще одна малая вычислительная машина под названием «Урал» была выпущена в 1954 г. коллективом сотрудников под руководством Б. И. Рамеева. Эта машина стала родоначальником целого семейства «Уралов», последняя серия которых («Урал-16») была выпущена в 1967 г. Простота машины, удачная конструкция, невысокая стоимость обусловили ее широкое применение.

В 1955 г. был создан Вычислительный центр Академии наук СССР, предназначенный для ведения научной работы в области машинной математики и для предоставления открытого вычислительного обслуживания другим организациям Академии.
Во второй половине 50-х гг. в нашей стране было выпущено еще восемь типов машин по вакуумно-ламповой технологии. Из них наиболее удачной была ЭВМ М-20, созданная под руководством С. А. Лебедева, который в 1954 г. возглавил ИТМ и ВТ.

Машина отличалась высокой производительностью (20 тыс. оп/с), что было достигнуто использованием совершенной элементной базы и соответствующей функционально-структурной организации. Как отмечают А. П. Ершов и М. Р. Шура-Бура, «эта солидная основа возлагала большую ответственность на разработчиков, поскольку машине, а более точно ее архитектуре, предстояло воплотиться в нескольких крупных сериях (М-20, БЭСМ-ЗМ, БЭСМ-4, М-220, М-222)». Серийный выпуск ЭВМ М-20 был начат в 1959 г.

В 1958 г. под руководством В. М. Глушкова (1923— 1982) в Институте кибернетики АН УССР была создана вычислительная машина «Киев», имевшая производительность 6—10 тыс. оп/с. Машина «Киев» впервые в нашей стране использовалась для дистанционного управления технологическими процессами.

В то же время в Минске под руководством Г. П. Лопато и В. В. Пржиялковского начались работы по созданию первой машины известного в дальнейшем семейства «Минск-1». Она выпускалась Минским заводом вычислительных машин им. Серго Орджоникидзе в различных модификациях: «Минск-1», «Минск-11», «Минск-12», «Минск-14». Машина широко использовалась в вычислительных центрах нашей страны. Средняя производительность машины составляла 2—3 тыс. оп/с.

Производство ЭВМ первого поколения в нашей стране прекратилось в 1964 г. [16].

Успехи полупроводниковой технологии и связанное с этим совершенствование структуры, расширение функций и усложнение задач предопределило смену элементной базы вычислительных машин. Немаловажным обстоятельством для перехода от вакуумно-ламповой технологии к полупроводниковой явились недостатки, свойственные электронным лампам. Большие габариты и большая масса ламповой аппаратуры тяготили разработчиков, а значительное потребление электроэнергии и недостаточная надежность — эксплуатационников ЭВМ. Достаточно вспомнить, что из 18 000 ламп в машине ЕNIАС ежемесячно заменялось 2000; вакуумно-ламповая технология уже стала тормозом в развитии вычислительной техники.

Джон фон Нейман вспоминал: «Машина так велика, что ее включение каждый раз «уносит» две лампы». Поиск неисправностей занимал до нескольких суток.

Интересно отметить, что пассивные элементы значительно реже выходили из строя. В машине ЕNIАС использовалось 7000 резисторов, из них были забракованы через 9000 ч работы только пять. Из 10 000 германиевых диодов, установленных в БЭСМ-1, в течение двухлетней эксплуатации заменены единицы.

Новая элементная база ЭВМ — полупроводниковые и магнитные элементы — зарождалась в недрах старой. Сначала лампы были заменены германиевыми диодами в оперативной памяти, затем в арифметическом и управляющем устройствах. Позже в оперативной памяти для реализации логических функций стали применять ферритдиодные ячейки. И наконец, качественный скачок — двойные вакуумные триоды и пентоды, на которых выполнены статические и динамические триггеры, блокинг-генераторы, формирователи и другие узлы, были заменены транзисторами.

Читатель, видимо, уже отметил, что за этот исторически короткий период разными фирмами созданы многие ЭВМ, отличающиеся по архитектуре, аппаратному и математическому обеспечению, элементной базе и другим признакам. Это было начало стихийного процесса, порожденного конкуренцией фирм и конструкторов, процесса негативного, лавинообразного. Страдал от него потребитель (пользователь). Однажды сделав выбор, пользователь вынужден был и в дальнейшем приобретать оборудование только этой фирмы. Машины разных фирм не были согласованы между собой ни в аппаратном, ни в программном отношении. Чтобы воспользоваться продукцией другой фирмы, необходимо было полностью избавиться от ранее приобретенного оборудования. Сделать это не просто — хлопотно и дорого.

Вопросы унификации и стандартизации нигде в мире до конца не разрешены до настоящего времени. Пользователи стали отдавать предпочтение наиболее удачной разработке, а потом уже вынуждены были останавливать свой выбор на наиболее распространенном компьютере, надеясь на взаимный обмен программами и оборудованием. Так, к настоящему времени международным эталоном (условным стандартом), а попросту наибольшим спросом пользуется оборудование фирмы IBM. Теперь это единственная фирма, имеющая на международном рынке надежные позиции. Естественно, другие фирмы постоянно испытывают судьбу в отчаянных попытках вырвать передовые рыночные позиции у фирмы IBM, но пока они успеха не имели.

Аркадий Петрович Частиков
«Вычислительная техника и ее применение» 1988/1

Источник

Компьютерная грамотность с Надеждой

Заполняем пробелы — расширяем горизонты!

Пять поколений ЭВМ

Компьютерная грамотность предполагает наличие представления о пяти поколениях ЭВМ, которое Вы получите после ознакомления с данной статьей.

Когда говорят о поколениях, то в первую очередь говорят об историческом портрете электронно-вычислительных машин (ЭВМ).

Фотографии в фотоальбоме по истечении определенного срока показывают, как изменился во времени один и тот же человек. Точно так же поколения ЭВМ представляют серию портретов вычислительной техники на разных этапах ее развития.

Всю историю развития электронно-вычислительной техники принято делить на поколения. Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники. Это всегда приводило к росту быстродействия и увеличению объема памяти. Кроме этого, как правило, происходили изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.

ЭВМ первого поколения

Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годовОни были ламповыми машинами 50-х годов. Их элементной базой были электровакуумные лампы. Эти ЭВМ были весьма громоздкими сооружениями, содержавшими в себе тысячи ламп, занимавшими иногда сотни квадратных метров территории, потреблявшими электроэнергию в сотни киловатт.

Например, одна из первых ЭВМ – ENIAC представляла собой огромный по объему агрегат длиной более 30 метров, содержала 18 тысяч электровакуумных ламп и потребляла около 150 киловатт электроэнергии.

Для ввода программ и данных применялись перфоленты и перфокарты. Не было монитора, клавиатуры и мышки. Использовались эти машины, главным образом, для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор.

ЭВМ второго поколения

Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годов

В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Машины стали компактнее, надежнее, менее энергоемкими. Возросло быстродействие и объем внутренней памяти. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.

В этот период стали развиваться языки программирования высокого уровня: ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от конкретной модели машины, сделалось проще, понятнее, доступнее.

В 1959 г. был изобретен метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные таким образом схемы стали называться интегральными схемами или чипами. Изобретение интегральных схем послужило основой для дальнейшей миниатюризации компьютеров.

В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год.

ЭВМ третьего поколения

Это поколение ЭВМ создавалось на новой элементной базе – интегральных схемах (ИС).

Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годов

ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Немного позднее появились машины серии IBM-370.

В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370. Скорость работы наиболее мощных моделей ЭВМ достигла уже нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски.

Успехи в развитии электроники привели к созданию больших интегральных схем (БИС), где в одном кристалле размещалось несколько десятков тысяч электрических элементов.

Ламповыми машинами 50 х годов. Смотреть фото Ламповыми машинами 50 х годов. Смотреть картинку Ламповыми машинами 50 х годов. Картинка про Ламповыми машинами 50 х годов. Фото Ламповыми машинами 50 х годов

В 1971 году американская фирма Intel объявила о создании микропроцессора. Это событие стало революционным в электронике.

Микропроцессор – это миниатюрный мозг, работающий по программе, заложенной в его память.

Соединив микропроцессор с устройствами ввода-вывода и внешней памяти, получили новый тип компьютера: микро-ЭВМ.

ЭВМ четвертого поколения

Микро-ЭВМ относится к машинам четвертого поколения. Наибольшее распространение получили персональные компьютеры (ПК). Их появление связано с именами двух американских специалистов: Стива Джобса и Стива Возняка. В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году – Apple-2.

Однако с 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее архитектура стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.

С развитием этого типа машин появилось понятие «информационные технологии», без которых невозможно обойтись в большинстве областей деятельности человека. Появилась новая дисциплина – информатика.

ЭВМ пятого поколения

Они будут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.

Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ:

Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.

Фирма IBM тоже не намерена сдавать свои позиции мирового лидера, например, Японии. Мировая гонка за создание компьютера пятого поколения началась еще в 1981 году. С тех пор еще никто не достиг финиша. Поживем – увидим.

P.S. Статья закончилась, но можно еще прочитать:

Нашли ошибку? Выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *