Кшм это в машине что такое простыми словами

Кривошипно-шатунный механизм и двигатель наразлучны

Кривошипно-шатунный механизм (КШМ), пожалуй, самая важная система двигателя.
Назначение кривошипно-шатунного механизма – преобразовывать возвратно-поступательное движение во вращательное и обратно.

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

Все детали кривошипно-шатунного механизма делятся на две группы: подвижные и неподвижные. К подвижным относятся:

Устройство кривошипно-шатунного механизма

Поршень похож на перевернутый стакан, в который укладываются кольца. На любом из них присутствуют два вида колец: маслосъемное и компрессионное. Маслосъемных обычно ставят два, а компрессионных – одно. Но бывают и исключения в виде: два таких и два таких — все зависит от типа двигателя.

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

Шатун изготавливается из двутаврового стального профиля. Состоит из верхней головки, которая соединяется с поршнем при помощи пальца, и нижней – соединение с коленчатым валом.

Коленчатый вал изготавливается в основном из чугуна повышенной прочности. Представляет собой несоосный стержень. Все шейки тщательно шлифуются, с соблюдением необходимых параметров. Существуют коренные шейки — для установки коренных подшипников, и шатунные – для установки через подшипники шатунов.

Роль подшипников скольжения выполняют разрезные полукольца, выполненные в виде двух вкладышей, которые обработаны токами высокой частоты для прочности. Все они покрыты антифрикционным слоем. Коренные крепятся к блоку двигателя, а шатунные — к нижней головке шатуна. Чтобы вкладыши хорошо работали, в них делают канавки для доступа масла. Если вкладыши провернуло – значит, имеется недостаточный подвод масла к ним. Это обычно происходит при засорении масляной системы. Вкладыши ремонту не подлежат.

Продольное перемещение вала ограничивают специальные упорные шайбы. С обоих концов обязательно применение различных сальников для предотвращения выхода масла из системы смазки двигателя.

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

К передней части коленвала крепится шкив привода системы охлаждения и звездочка, которая приводит в действие распредвал при помощи цепной передачи. На основных моделях выпускаемых сегодня автомобилей ей на замену пришел ремень. К задней части коленчатого вала крепится маховик. Он предусмотрен для устранения дисбаланса вала.

Также на нем стоит зубчатый венец, предназначенный для пуска двигателя. Чтобы при разборке и дальнейшей сборке не возникало проблем – крепеж маховика выполняется по не симметричной системе. От расположения меток его установки зависит и момент зажигания – следовательно, оптимальная работа двигателя. При изготовлении его балансируют вместе с коленчатым валом.

Картер двигателя изготавливается вместе с блоком цилиндров. Он служит основой для крепления ГРМ и КШМ. Имеется поддон, который служит емкостью для масла, а так же для защиты двигателя от деформации. Снизу предусмотрена специальная пробка для слива моторного масла.

Принцип работы КШМ

На поршень оказывают давление газы, которые вырабатываются при сгорании топливной смеси. При этом он совершает возвратно – поступательные движения, заставляя проворачиваться коленчатый вал двигателя. От него вращательное движение передается на трансмиссию, а оттуда – на колеса автомобиля.

А вот на видео показано как работает КШМ в тюнингованном ВАЗ 2106:

Основные признаки неисправности КШМ:

Кривошипно-шатунный механизм двигателя очень уязвим. Для эффективной работы необходима своевременная замена масла. Лучше всего ее производить на станциях техобслуживания. Даже, если Вы недавно поменяли масло, и приходит пора сезонного ТО – обязательно перейдите на то масло, какое указано в инструкции по эксплуатации машины. Если в работе двигателя возникают какие-то проблемы: шумы, стуки – обращайтесь к специалистам – только в авторизированном центре Вам дадут объективную оценку состояния автомобиля.

Источник

Кривошипно-шатунный механизм (КШМ). Маятник Капицы

Данная статья является вводной теорией к занятию по робототехнике «Кривошипно-шатунный механизм из Lego EV3″

Первые КШМ

Первые упоминания об использовании кривошипно-шатунного механизма можно отнести ко временам Древнего Рима (примерно III век н.э.). Машина для распиливания каменных блоков передавала вращение от водяного колеса с помощью зубчатой передачи на кривошипно-шатунный механизм, который преобразовывал вращательное движение в возвратно-поступательное движение полотна пилы. Также такие устройства могли использоваться на древних лесопилках.

Большого распространения такие машины не получили – деревянные части из-за большого количества трущихся деталей быстро изнашивались и требовали частого ремонта, а рабский труд был намного дешевле и не требовал большой квалификации рабочих.

В XVI веке кривошипно-шатунный механизм появился на деревянных самопрялках. Самопрялка – это ручной станок для прядения нити из шерсти, состоящий из двух катушек. В самопрялке для скручивания нити использовался принцип ременной передачи. Раньше большую катушку приходилось раскручивать рукой. К самопрялке добавили педаль. Нажимая ногой на педаль, работник смог раскручивать катушку без использования рук. Этот механизм упростил работу и позволил за то же время производить больше пряжи. В данном устройстве возвратно-поступательное движение педали передавалось через деревянный шатун на кривошип и преобразовывалось во вращательное движение большой катушки (шкива).

КШМ в паровых машинах

Начиная с начала XVIII века большую популярность среди изобретателей и ученых начинают получать паровые машины. Первый паровой двигатель для водяного насоса построил в 1705 году английский изобретатель Томас Ньюкомен для выкачивания воды из глубоких шахт.

Позднее устройство парового двигателя было усовершенствовано шотландским инженером и механиком Джеймсом Уаттом (1736-1819). Кстати, именно Джеймс Уатт ввел в оборот термин «лошадиная сила», а его именем назвали единицу мощности Ватт. Паровая машина Уатта получила сложную систему связанных тяг, а планетарная зубчатая передача преобразовывала возвратно-поступательное движение поршня во вращательное движение маховика (большого тяжелого колеса). Данная паровая машина стала универсальной, так как в отличие от машины Ньюкомена поршень имел рабочий ход в обе стороны. Машина Уатта получила широкое распространение на ткацких фабриках, в металлургии, при строительстве первых паровозов для железных дорог XVIII века.

Нужно сказать, что паровыми машинами занимались в те времена очень многие изобретатели. Так, в Российской Империи свою двухцилиндровую паровую машину изобрел инженер Иван Иванович Ползунов (1728-1766).

В XIX веке паровую машину Уатта упростили, заменив сложный планетарный механизм на кривошипно-шатунный механизм.

Паровая машина с КШМ нашла широкое применение при строительстве первых автомобилей на паровой тяге и паровозов, перевозящих грузы по железной дороге.

КШМ в двигателях внутреннего сгорания

До этого мы рассматривали использование кривошипно-шатунного механизма в паровых двигателях. В паровом двигателе топливо сгорает в печи (вне цилиндра) и нагревает водяной котел, и уже водяной пар в цилиндре толкает поршень.

В двигателе внутреннего сгорания топливная смесь (воздух + газ, или воздух + бензин и т.д.) поджигается внутри цилиндра и продукты горения толкают поршень. Сокращенно такие двигатели называют ДВС.

Первый одноцилиндровый ДВС на газовом топливе построил в 1860 году в Париже французский изобретатель Жан Ленуар.

Однако широкое применение двигатели внутреннего сгорания нашли в конце XIX века после получения керосина и бензина из нефти. Появление жидкого топлива позволило создать экономичные двигатели небольшой массы, которые можно было использовать для привода транспортных машин.

В 1881-1885 гг. российский изобретатель Огнеслав Костович сконструировал и построил в России восьмицилиндровый двигатель мощностью 59 кВт.

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словамиДвигатель внутреннего сгорания Огнеслава Костовича

В 1897 г. немецким инженером Рудольфом Дизелем был спроектирован и построен первый двигатель с воспламенением от сжатия. Это был компрессорный двигатель, работающий на керосине, впрыскиваемом в цилиндр при помощи сжатого воздуха.

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словамиРудольф Дизель и его двигатель внутреннего сгорания

Все эти ДВС имели схожие черты и использовали кривошипно-шатунный механизм для преобразования возвратно-поступательного движения поршня во вращательное движение коленвала.

Давайте посмотрим на схему устройства современного двигателя внутреннего сгорания.

Поршень совершает возвратно-поступательное движение вдоль цилиндра – он ходит вверх и вниз.

Шатун – деталь, связывающая кривошип и поршень.

Кривошип – условная деталь, которая связывает шатун с коленвалом.

Противовес снижает вибрации при вращении коленвала.

Блок цилиндров – корпус, в котором находятся цилиндры двигателя.

Поршневой палец – цилиндрическая деталь, ось вращения шатуна относительно поршня.

Коленвал (коленчатый вал) – ось вращения ступенчатой формы.

Верхняя мертвая точка – крайнее верхнее положение поршня, где меняется направление его движения.

Нижняя мертвая точка — крайнее нижнее положение поршня, где меняется направление его движения.

Ход поршня — расстояние между крайними положениями поршня. Равно удвоенному радиусу кривошипа.

Видео:

Литература:

Маятник Капицы

Обычный маятник, если перевернуть его кверху ногами, неустойчив. Для него крайне трудно найти верхнюю точку равновесия. Но если совершать быстрые вертикальные возвратно-поступательные колебания, то положение такого маятника становится устойчивым.

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словамиПетр Леонидович Капица

Советский академик и нобелевский лауреат по физике Петр Леонидович Капица (1894 — 1984) использовал модель маятника с вибрирующим подвесом для построения новой теории, которая описывала эффекты стабилизации тел или частиц. Работа Капицы по стабилизации маятника была опубликована в 1951 году, а сама модель получила название «маятник Капицы». Более того, было открыто новое направление в физике — вибрационная механика. Данная модель позволила наглядно показать возможности высокочастотной электромагнитной стабилизации пучка заряженных частиц в ускорителях.

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словамиВладимир Игоревич Арнольд

Другой советский математик и академик Владимир Игоревич Арнольд (1937-2010), который был заместителем Капицы, вспоминал его слова:

«Он (Капица — примечание) сказал: «Вот смотрите — когда придумывается какая-то физическая теория, то прежде всего надо сделать маленький какой-нибудь прибор, на котором его наглядно можно было-бы продемонстрировать кому угодно. Например, Будкер и Векслер хотят делать ускорители на очень сложной системе. Но я посмотрел, что уравнения, которые говорят об устойчивости этого пучка, означают, что если маятник перевернут кверху ногами, он обычно неустойчив, падает. Но если точка подвеса совершает быстрые вертикальные колебания, то он становится устойчивым. В то время как ускоритель стоит много миллионов, а этот маятник можно очень легко сделать. Я его сделал на базе швейной электрической машинки, он вот здесь стоит». Он нас отвел в соседнюю комнату и показал этот стоящий вертикально маятник на базе швейной машинки».

У математика Арнольда не было своей швейной машинки, и он огорчился. Но у него была электробритва «Нева», из которой и был собран перевернутый маятник. К сожалению, в первой конструкции маятник падал. Тогда Арнольд вывел формулу и увидел, что длина маятника не должна быть больше 12 сантиметров. Известный математик укоротил подвес до 11 сантиметров и все получилось.

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

Давайте посмотрим, какие силы действуют на «маятник Капицы». После прохождения верхней мертвой точки подвес маятника начинает тянуть грузик вниз. После прохождения нижней мертвой точки подвес толкает грузик вверх. Так как углы вежду векторами сил в верхней и нижней точке разные, то сумма их векторов дает силу, направленную к оси вертикальных колебаний маятника. Если эта сила больше силы тяжести, то верхнее положение маятника становится устойчивым.

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

А эта формула описывает взаимосвязь частоты вибраций подвеса, амплитуды колебаний и длины жесткого подвеса.

Источник

Устройство и принцип работы кривошипно-шатунного механизма двигателя

Кривошипно-шатунный механизм двигателя преобразует возвратно-поступательное движение поршней (от энергии сгорания топливной смеси) во вращательное движение коленчатого вала и наоборот. Это технически сложный механизм, составляющий основу ДВС. В статье подробно рассмотрим устройство и особенности работы КШМ.

Краткая история возникновения

Первые свидетельства о применении кривошипа найдены ещё в III веке нашей эры, в Римской Империи и Византии в VI веке нашей эры. Ярким примером является пилорама из Иераполиса, на которой был применен коленчатый вал. Металлический кривошип был найден в римском городе Августа-Раурика на территории современной Швейцарии. Как бы то ни было, запатентовал изобретение некий Джеймс Пакард в 1780 году, хотя свидетельства его изобретения были найдены еще в древности.

Подвижные и неподвижные части КШМ

Составные части КШМ условно делят на подвижные и неподвижные компоненты. К подвижным частям относятся:

Неподвижные части КШМ выполняют функцию основы, крепежей и направляющих. К ним относятся:

Картер и поддон картера двигателя

Картер – это нижняя часть двигателя, где располагаются опоры и каналы смазочной системы для коленчатого вала. В картере происходит движение шатунов и вращение коленвала. Поддон картера представляет собой резервуар с моторным маслом.

Основа картера в работе подвергается постоянным тепловым и силовым нагрузкам. Поэтому для этой детали предъявляются особые требования по прочности и жесткости. Для его изготовления используют алюминиевые сплавы или чугун.

Картер двигателя крепится к блоку цилиндров. Вместе они составляют остов двигателя, основную часть его корпуса. В блоке располагаются непосредственно сами цилиндры. Сверху крепится головка блока ДВС. Вокруг цилиндров имеются полости для жидкостного охлаждения.

Расположение и число цилиндров

На сегодняшний день существуют следующие наиболее популярные схемы:

В простом рядном расположении цилиндры и поршни расположены в ряд перпендикулярно коленчатому валу. Такая схема наиболее простая и надежная.

Головка блока цилиндров

К блоку с помощью шпилек или болтов крепится головка блока цилиндров. Она накрывает цилиндры с поршнями сверху, образуя герметичную полость – камеру сгорания. Между блоком и головкой предусмотрена прокладка. Также в ГБЦ располагаются клапанный механизм и свечи зажигания.

Цилиндры

В цилиндрах двигателя непосредственно происходит движение поршней. От хода поршня и его длины зависит их размер. Цилиндры работают в условиях меняющегося давления и высоких температур. Во время работы стенки подвергаются непрерывному трению и температурам до 2500°C. К материалам и обработке цилиндров также предъявляются особые требования. Они изготавливаются из легированного чугуна, стали или алюминиевых сплавов. Поверхность деталей должна быть не только прочной, но и легко подвергаться обработке.

Внешнюю рабочую поверхность называют зеркалом. Ее покрывают хромом и полируют до зеркальной поверхности, чтобы максимально снизить трение в условиях ограниченной смазки. Цилиндры отливаются вместе с блоком (цельные) или изготавливаются в виде съемных гильз.

Кривошипно-шатунный механизм

Основными рабочими компонентами КШМ являются коленчатый вал, поршни с шатунами и маховик.

Поршень

Движение поршня в цилиндре происходит в результате сгорания топливовоздушной смеси. Возникает давление, которое воздействует на днище поршня. В разных типах двигателей оно может отличаться по своей форме. В бензиновых изначально днище было плоским, затем стали применять вогнутые конструкции с проточками под клапаны. В дизельных моторах в камере сгорания сжимается изначально не топливо, а воздух. Поэтому днище поршня имеет также вогнутую форму, которая и образует камеру сгорания.

Форма днища имеет большое значение для формирования правильного факела сгорания топливовоздушной смеси.

Остальная часть поршня называется юбкой. Это своего рода направляющая, которая движется в цилиндре. Нижняя часть поршня или юбки сделана так, чтобы она не соприкасалась с шатуном во время его движения.

На боковой поверхности поршней выполнены канавки или проточки под поршневые кольца. Сверху располагаются два или три компрессионных кольца. Они необходимы для создания компрессии, то есть препятствуют проникновению газов между стенками цилиндра и поршнем. Кольца прижимаются к зеркалу, уменьшая зазор. Снизу расположен паз под маслосъёмное кольцо. Оно необходимо для снятия излишков масла со стенок цилиндра, чтобы то не проникало в камеру сгорания.

Поршневые кольца, особенно компрессионные, работают при постоянных нагрузках и высокой температуре. Для их изготовления применяется высокопрочные материалы типа легированного чугуна, который покрывают пористым хромом.

Поршневой палец и шатун

Шатун крепится к поршню при помощи поршневого пальца. Он представляет собой цельную или полую деталь цилиндрической формы. Палец устанавливается в отверстие в поршне и в верхней головке шатуна.

Существуют два типа крепления пальца:

Наиболее распространен так называемый «плавающий палец». Для его фиксации используются стопорные кольца. Фиксированный палец устанавливается с натягом. Как правило, используется тепловая посадка.

Шатун, в свою очередь, соединяет коленчатый вал и поршень и создает вращательные движения. При этом возвратно-поступательные движения шатуна описывают восьмерку. Он состоит из нескольких элементов:

Для уменьшения трения и смазки соприкасающихся деталей в поршневой головке запрессовывается бронзовая втулка. Кривошипная головка выполнена разборной, чтобы обеспечить возможность сборки механизма. Детали точно подогнаны друг к другу и крепятся с помощью болтов и контргаек. Чтобы уменьшить трение, устанавливаются шатунные подшипники скольжения. Они выполнены в форме двух стальных вкладышей с замками. По масляным канавкам осуществляется подвод масла. Подшипники с высокой точностью подогнаны под размер соединения.

Вопреки расхожему мнению, вкладыши удерживаются от проворота не за счет замков, а из-за возникающей силы трения между их внешней поверхностью и головкой шатуна. Поэтому при установке внешнюю часть подшипника скольжения нельзя смазывать маслом.

Коленчатый вал

Коленчатый вал является сложной по устройству и изготовлению деталью. Он принимает на себя крутящий момент, давление и другие нагрузки, поэтому выполнен из высокопрочной стали или чугуна. Коленвал передает вращение от поршней на трансмиссию и другие элементы автомобиля (например, приводной шкив).

Коленчатый вал состоит из нескольких основных элементов:

Конструкция коленвала во многом будет зависеть от количества цилиндров в двигателе. В простом рядном четырехцилиндровом двигателе на коленчатом валу имеются четыре шатунных шейки, на которых устанавливаются шатуны с поршнями. Пять коренных шеек расположены по центральной оси вала. Они устанавливаются в опоры блока цилиндров или картера на подшипники скольжения (вкладыши). Сверху коренные шейки закрываются крышками на болтах. Соединение образует П-образную форму.

Специально обработанное место опоры под установку коренной шейки с вкладышем называется постелью.

Коренные и шатунные шейки соединены так называемыми щеками. Противовесы обеспечивают гашение излишних колебаний и обеспечивают равномерное движение коленчатого вала.

Шейки коленвала термически обработаны и отполированы, что обеспечивает высокую прочность и точность посадки. Коленчатый вал также имеет очень точную балансировку и центровку для равномерного распределения всех действующих на него сил. В районе центральной коренной шейки, по бокам от опоры, устанавливаются упорные полукольца. Они необходимы для компенсации осевых перемещений.

На хвостовик коленвала крепятся шестерни (звездочки) привода ГРМ, а также приводной шкив навесного оборудования двигателя.

Маховик

На задней части вала имеется фланец, к которому крепится маховик. Это чугунная деталь, представляющая собой массивный диск. Благодаря своей массе маховик создает необходимую инерцию для работы КШМ, а также обеспечивает равномерную передачу крутящего момента на трансмиссию. На ободе маховика выполнен зубчатый венец для соединения с шестерней стартера. Именно маховик раскручивает коленвал и приводит в движение поршни в момент запуска двигателя.

Кривошипно-шатунный механизм, конструкция и форма коленчатого вала долгие годы остаются неизменными. В основном происходят только небольшие конструктивные доработки, направленные на снижение веса, сил инерции и трения.

Источник

Разрушители легенд. Двигатель внутреннего сгорания. Часть №6. Кривошипно-шатунный механизм. Часть №1. Шатун.

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

Вся история существования и развития двигателей внутреннего сгорания(ДВС) непрерывно связана с применением кривошипно-шатунного механизма(КШМ), без которого двигатели в давно и всем известном виде просто непредставимы. Поршень в цилиндре движется прямолинейно-поступательно и преобразовать это движение во вращательное без КШМ не представляется возможным.

Чего наворотили на основе КШМ за последние сто лет можно посмотреть здесь:

При всём кажущемся совершенстве конструкций на основе КШМ попытки создать двигатель без КШМ не прекращаются по сей день. Ничего путнего на горизонте мы пока не наблюдаем, но изобретателей это не останавливает.

Двухсотлетнее стремление избавиться от КШМ давно уже выродилось в самоцель и, похоже, народ давно позабыл(или никогда и не знал?)первопричину этих потуг. Почему же конструкторы всех мастей с маниакальным упорством продолжают опять и опять изобретать велосипед?
Чем так не угодил КШМ создателям ДВС?

Я уже давал ответ на этот вопрос в предыдущих своих статьях, но сегодня хочу остановиться на этом вопросе подробнее. Давайте ещё раз рассмотрим конструкцию КШМ.

Давление газов в цилиндре ДВС равномерно распределено по поверхности «камеры сгорания». Вектор силы этого давления НА ПОРШЕНЬ действует вдоль стенок цилиндра в район оси вращения коленвала. Поршень воздействует на кривошип через шатун, который поворачивается при вращении коленвала на довольно значительный угол — соответственно шатун передаёт на кривошип хоть и бОльшую, но только ЧАСТЬ давления газов. Кривошип в свою очередь преобразует в крутящий момент только ту ЧАСТЬ передаваемого шатуном усилия, которая направлена по КАСАТЕЛЬНОЙ относительно коленвала — таким образом теряя ещё значительную часть передаваемого усилия. Все силы, которые не преобразуются в крутящий момент на коленвалу — деформируют коленвал, шатун, стенки цилиндров, поршень, подшипники и всё прочее типа блока цилиндров — в итоге взаимокомпенсируются через механизмы двигателя и потому полезной работы не совершают. Пропадают зря.

Давайте проследим путь СИЛЫ давления газов на поршень до выходного вала ДВС.
Как видно из рисунка — в каждом КШМ имеется ДВА узла, манипулирующих силами давления газов:

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

Первый такой узел — это сочленение ПОРШЕНЬ-ШАТУН.
Максимальный коэффициент трансформации силы(далее КТС) давления газов через шатун возникает когда шатун расположен по оси силы давления — соответственно этот момент возникает только в ВМТ и НМТ. По мере отклонения шатуна от вертикали передаваемая на кривошип сила уменьшается по закону Pt=P1*cos(β) от 100% до некоего минимума, возникающего при повороте кривошипа на 90 градусов после ВМТ.
«Наука» теплотехника несколько извращённо трактует взаимодействие сил в этом сочленении.
Третий закон Ньютона пока ещё никто не отменял, но некоторые уже давно и успешно его забыли — сила действия ВСЕГДА равна силе противодействия. Именно поэтому НА САМОМ ДЕЛЕ боковая составляющая вызвана силой ПРОТИВОДАВЛЕНИЯ, действующей в ответ на силу ДАВЛЕНИЯ газов. Поскольку эти силы взаимодействуют под углом — то и «возникает» третья сила, в полном соответствии с законами сложения и разложения сил. В старых учебниках по ДВС ещё можно найти адекватные иллюстрации:

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

Чем сильнее отклоняется шатун — тем БОЛЬШЕ получается сила(N) давления поршня на стенки цилиндра.
Чем сильнее отклоняется шатун — тем МЕНЬШЕ получается сила(Pt), передаваемая через шатун на кривошип!

Максимальный угол отклонения шатуна напрямую зависит от соотношения ДЛИНЫ ШАТУНА к РАДИУСУ КРИВОШИПА. Чем длиннее шатун — тем меньше возникающий угол. Лучше всего когда шатун длиннее плеча кривошипа в 4 раза и более — максимальный угол отклонения шатуна тогда минимален.

Алхимики от двигателестроения шифруются и потому у них своя система координат — они манипулируют соотношением длины шатуна и рабочего хода поршня — это соотношение у них принято обзывать «R/S». Как часто бывает(или это специально делается?) — общепринятый термин в очередной раз всё путает. Рабочий ход поршня к углу отклонения шатуна никакого отношения, конечно же, не имеет. Но поскольку в силу конструктивных особенностей КШМ рабочий ход поршня ровно в два раза больше радиуса кривошипа — то и такое соотношение можно использовать.
Только зачем?
Я терпеть не могу, когда термин перевирает техническую суть.
Потому я не буду использовать термин R/S в своём рассказе.

При коротком(3R) шатуне угол отклонения шатуна от вертикали достигает 20 градусов и, соответственно, передаваемое на кривошип усилие в сочленении ПОРШЕНЬ-ШАТУН уменьшается процентов на 6-7. Энергия не берётся из ниоткуда и не исчезает в никуда — всё, что недополучит от поршня кривошип, всё это усилие будет впечатывать поршень в стенки цилиндра, что многократно увеличивает трение в цилиндро-поршневой группе(что тоже чревато увеличением потерь мощности) и существенно ускоряет износ.
Т.е. часть сил давления газов замыкается в двигателе накоротко уже на этом этапе.

Чем короче шатун — тем сильнее он отклоняется от вертикали при вращении кривошипа и тем больше «ГЕОМЕТРИЧЕСКИЕ» потери сил в сочленении ПОРШЕНЬ-ШАТУН:

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

Потому, как ни странно прозвучит — но именно длина шатуна обуславливает МАКСИМАЛЬНУЮ эффективность КШМ в целом! Подавляющее большинство двигателей имеет шатуны длиной 3-3.5R — соответственно за счёт сочленения ПОРШЕНЬ-ШАТУН двигатель с такой геометрией никак не может передать на кривошип больше условных 95% сил, воздействующих на поршень.

Даже 5% потерь уже готового к употреблению момента — это очень дофига. Это просто неприлично много. В потугах хоть как-то отыграть эти потери применяют смещение оси движения поршня(«дезаксиал»\»дезаксаж») — либо сдвигают точку крепления шатуна к поршню, либо сдвигают сами цилиндры в блоке так, чтобы шатун в зоне максимального давления газов был перпендикулярен(ну или хотя бы БОЛЕЕ перпендикулярен) днищу поршня и направлен строго вдоль вектора силы передаваемого через шатун давления:

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

Как видите — смещение уменьшает угол между шатуном и вектором силы давления газов в самом ответственном положении коленвала. За счёт этого средний момент, предаваемый шатуном на кривошип получается увеличить на 1-2 процента.
Это как бы немного, но не будем забывать, что это чуть ли не ПОЛОВИНА ПОТЕРЬ в сочленении ПОРШЕНЬ-ШАТУН. Соответственно при смещении оси движения поршня значительно снижается давление поршня на стенки цилиндра, уменьшается скорость поршня на рабочем такте, это в свою очередь приводит к уменьшению потерь на трение в цилиндре и к уменьшению износа ЦПГ. Уменьшается шум и нагрузки при перекладке поршня…
Но это всё ПРОИЗВОДНЫЕ от потерь в сочленении ПОРШЕНЬ-ШАТУН при отклонении шатуна от оси движения поршня. Я не буду влезать в дезаксиал глубоко — к сожалению он не решает всех проблем, а некоторые проблемы существенно усугубляет, увы.

Есть ещё одна проблема, которую вообще практически не озвучивают — это ДИНАМИЧЕСКИЕ потери. Дело в том, что шатун при работе двигателя движется по довольно замысловатой траектории. Длинный шатун(5R) перемещает поршень по очень близкой к синусоиде траектории. Так выглядит график ПЕРЕМЕЩЕНИЯ поршня на одинаковом коленвалу при разных шатунах(синяя кривая — при относительно длинном(5R) шатуне, красная при относительно коротком(3R) шатуне):

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

Как видите — отличия в кинематике поршня минимальны и непонятно о чём беспокоиться.
Но давайте посмотрим на график отклонения шатуна от оси движения поршня:

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

Как видите — максимальный угол отклонения шатуна отличается почти в два раза.
При длинном шатуне мы максимально теряем около 2% передаваемого момента(КТС=0.98), а при коротком — почти 6%(КТС=0.94). Т.е. ГЕОМЕТРИЧЕСКИЕ потери передаваемого момента в сочленении поршень-шатун из-за более сильного отклонения короткого шатуна выше в ТРИ РАЗА!

На самом деле можно взять шатуны и ещё длиннее длинного(тогда потери уменьшаются всё медленнее) и ещё короче короткого(тогда потери нарастают лавинообразно) — но в реальном двигателестроении даже рассмотренные крайности применяются редко, а лезть в галимую теорию я смысла не вижу — меня интересуют чисто практические вещи.

Понятно, что на кону всего-то-навсего 4% от крутящего момента двигателя, но это очень не мало и это всё ещё СТАТИКА, о которой я писал выше.

Давайте смотреть ДИНАМИКУ.
График СКОРОСТИ поршней и шатунов уже начинает вызывать тревогу:

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

Дело в том, что скорость поршней в цилиндрах сильно влияет на сопротивление и износ.
А оба этих параметра — обратная сторона потерь энергии на трение.

Как видно на графике — скорость движения поршневой группы минимальна вблизи верхней мёртвой точки и вблизи нижней мёртвой точки, а максимальна — посередине хода поршня. Т.е. поршневая группа при каждом обороте коленчатого вала два раза разгоняется максимально и два раза тормозится до нулевой скорости.
Понятно, что каждый разгон и торможение требуют затрат энергии.
При возрастании скорости в два раза — ускорения(а значит и затраты энергии на разгон-торможение) возрастают в четыре раза. А как мы видим на графике — максимальная скорость поршневой группы при коротком шатуне на 3% выше.

Давайте посмотрим на ускорения поршневой при разных шатунах:

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

Ускорение в ВМТ отличается на 11% и затраты энергии на возвратно-поступательно движение поршневой группы увеличатся пропорционально!

Вблизи НМТ картина ещё более интересная — там ускорение поршневой группы с коротким шатуном имеет сложный характер. На первый взгляд максимальное ускорение ниже, но дело в том, что там выше скорость изменения ускорения — РЫВОК. А рывок — это ещё более энергозатратная(и разрушительная!) штука, чем ускорение.
Кому интересны подробности — читайте например тут.

Вот кривая РЫВКА этих же поршней и шатунов:

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

Как видно из графика максимальные скорости изменения ускорения при идеально РАВНОМЕРНОМ вращении коленвала находятся в районе 60 градусов ДО ВМТ и в районе 60 градусов ПОСЛЕ ВМТ. При коротком шатуне есть два явно выраженных всплеска в районе 25 градусов ДО НМТ(разгонный рывок) и в районе 25 градусов ПОСЛЕ НМТ(рывок торможения).
В четырёхцилиндровом РЯДНОМ двигателе рывки всех 4 цилиндров накладываются друг на друга — ведь они происходят одновременно в двух цилиндрах — при движении поршня вверх, и одновременно в двух других цилиндрах — при движении поршня вниз. Ещё и воспламенение в одном из цилиндров в районе ВМТ накладывается синфазно каждый такт…
Именно поэтому вибрации четырёхцилиндрового двигателя максимальны по амплитуде и потому именно он считается самым неуравновешенным.

Дезаксиал серьёзно ухудшает эту картину.
Но без него современный КОРОТКОШАТУННЫЙ двигатель немыслим.
В итоге вибрации двигателей получаются настолько высокими, что производителям пришлось изобретать и внедрять балансирные валы:

Кшм это в машине что такое простыми словами. Смотреть фото Кшм это в машине что такое простыми словами. Смотреть картинку Кшм это в машине что такое простыми словами. Картинка про Кшм это в машине что такое простыми словами. Фото Кшм это в машине что такое простыми словами

Эти неуравновешенные валы вращаются с вдвое более высокими оборотами, чем коленчатый вал — таким образом они тоже создают вибрации, но эти вибрации рассчитывают так, чтобы они действовали в противофазе к вибрациям коряво спроектированного КШМ и таким образом гасили их. Вот так производители «успешно» борются с проблемами, которые сами же и породили.
Правая рука не ведает, что вытворяет левая?
В результате внешних проявлений почти нет — трясётся короткошатунный двигатель не сильнее нормального длинношатунного, но внутри такого двигателя бушуют страсти — повышенные ударные нагрузки на коленвал и поршневую, значительные дополнительные вес и инерционные нагрузки, высокие ударные нагрузки на кучу дополнительных узлов — всё это приводит к ускоренному износу и повышенному расходу топлива…

Маниакальная страсть производителей ширпотребовских двигателей снять максимальную мощность с объёма завела индустрию в патовую ситуацию.
Мощность — это обороты.
Производители в погоне за оборотами(читай — за литровой мощностью) пошли по самому лёгкому пути — максимально снизили вес и РАЗМЕРЫ цилиндро-поршневой группы. Ну и получили что получили.
Паспортной МАКСИМАЛЬНОЙ мощности до сих пор приносят в жертву и момент, и экономичность, и ресурс.

При увеличении оборотов в 10 раз — скорости поршневой группы увеличиваются в 10 раз, ускорения увеличиваются в 100 раз, а рывок — в 1000 раз. Соответственно лавинообразно увеличиваются ДИНАМИЧЕСКИЕ потери момента, которые просто обязаны пагубно отражаться на итоговом КПД двигателя в реальной работе. Особенно на высоких оборотах. Но считать их я не буду — это уже высшая математика, а мне бы с арифметикой двигателя разобраться для начала…

На картинках даже в современных учебниках по ДВС нарисованы двигатели в тех пропорциях, какими их представляли себе инженеры начала прошлого века — они-то понимали толк в том, что делали. Но в жизни мы подобные пропорции найдём разве что в судовых и локомотивных двигателях.
Ну и разумеется — в двигателях Формулы-1, которым приходится крутиться с оборотами под 22000, из-за чего в них все эти современные извращения просто недопустимы…
Легковое же двигателестроение уже давно заблудилось в трёх соснах — современные двигатели ВСЕ короткошатунные и короткоходые — и бензинки и дизеля.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *