Контроллер заряда акб авто
Контроллер заряда АКБ — что это и для чего он нужен?
Контроллер заряда аккумулятора — это плата, которая защищает элемент питания от скачков напряжения, перезарядки или “глубокой разрядки”. Расскажем об особенностях таких устройств, их видах и способах подключения.
Что такое контроллер заряда аккумулятора
Контроллер заряда работает по разным принципам, что завит от типа батареи, к которой он подключен. В мобильных телефонах, смартфонах, планшетах, ноутбуках используют BMS-плату (микросхему) с распаянными электронными элементами на литий-ионном аккумуляторе. Если исключить плату защиты из цепи, то АКБ быстрее выйдет из строя или взорвется из-за нарушений правил эксплуатации.
В ветрогенераторах используют электронные блоки. Внешние контроллеры подключают к солнечным батареям. Последние выбирают исходя от типа аккумуляторов для накопления электрической энергии. Последние, зачастую представлены в свинцово-кислотном исполнении.
Функции
Контролеры созданы для:
Все параметры задают микросхеме или контролеру на этапе производства.
Виды контроллеров
Принцип зарядки батареи зависит от установленного оборудования. Нижеперечисленные контроллеры используют для солнечных батарей, аналогичные устройства применяют и в других сферах восполняемого электричества.
Приборы On/Off
Устройство начального сегмента, которое отключает подачу питания после достижения аккумулятором максимального напряжения. Это защищает батарею от перегрева, перезарядки.
Срабатывает “защита”, когда восстановлено 70-85% емкости — пик напряжения. Далее, ток должен уменьшиться и зарядить АКБ до 100% за 1-3 часа, но этого не происходит из-за особенностей прибора. Как итог, постоянная недозарядка уменьшает срок эксплуатации и емкость аккумулятора.
Контроллер носит второе название ШИМ и работает по принципу широтно-импульсной модуляции тока. По аналогии с печатной платой в смартфонах, где установлены литейно-ионные источники питания, устройство понижает входящее напряжение по достижению его пика и доводит зарядку до 100%.
Стоит устройство выше предыдущего варианта, но позволяет сохранить “резервуары для энергии”.
В прибор заложены алгоритмы для замеров тока и напряжения системы энергоснабжения и определения оптимального соотношения параметров для стабильной работы подключенной станции.
Согласно статистике, MPPT на 35% продуктивнее распределяют энергию, полученную с внешнего источника питания, нежели PWM-варианты. Учитывая стоимость девайса, его принято использовать для автоматизации “солнечных ферм”. Из-за сниженной стоимости, в частных домах практичнее использовать ШИМ.
Гибридные устройства
Такие контроллеры совмещают особенности PWM и MPPT. Их используют для распределения энергии, полученной с ветрогенераторов, которые совмещают с солнечными панелями. Главным отличием от обычных моделей являются вольтамперные параметры.
Способы подключения
Подключение завит от типа устройства.
Специально для пользователей, рядом с клеммами есть обозначения, что к ним подключать. Необходимо учесть строгую последовательность:
1. Подключите аккумулятор.
2. Включите предохранитель на плате, рядом с «+».
3. Вставьте контакты солнечных батарей.
4. Подсоедините контрольную лампу с напряжением 12 или 24 В.
Подключение заметно отличается от ШИМ:
Последовательность и тип подключения будет незначительно отличаться:
Советы специалистов
Выбор контроллера зависит от сценария использования, напряжения батарей и химического состава АКБ. При ограниченном бюджете делают ставку на PWM. Для поддержания солнечной фермы используют MPPT.
Контроллером заряда аккумулятора снабжают любые источника питания, защищая их от перегрева, перезаряда, недозаряда и потери емкости. Приборы бывают интегрированными или внешними. Последние используют при получении энергии от солнечных панелей или ветряных установок, дополнительно задействуя инвертор.
Контроллер заряда аккумулятора на Алиэкспресс: лучшие модели из представленного ассортимента
Дата публикации: 19 июня 2019
В электрике нет лишних мелочей, и каждое устройство играет свою, строго определенную роль. С этим утверждением могут не согласиться некоторые сторонники использования солнечной энергии для заряда аккумуляторных батарей. Часто они напрямую подключают аккумулятор к солнечной батарее и успешно заряжают его при наличии даже рассеянного солнечного света. Но позже, когда аккумулятор выходит из строя гораздо раньше номинального срока эксплуатации, они вряд ли догадаются, что причина этого явления – в неуместной экономии. Что же происходит на самом деле?
Решение проблемы – покупка контроллера заряда на Алиэкспресс для тех, кто хочет подешевле, или в ближайшем магазине электротехнических товаров. Причем желательно отдать предпочтение модели с так называемой PWM-функцией. Рассмотрим преимущества ее применения:
Также в числе важных параметров нового контроллера заряда аккумулятора с Алиэкспресс опции:
Обзор лучших моделей контролеров заряда аккумулятора на Алиэкспресс
Ниже представлено описание моделей контроллеров, характеристики которых были по достоинству оценены многочисленными покупателями:
Предназначена для свинцово-кислотных аккумуляторов. Диапазон напряжения – от 6 до 60В. Модель оснащена ЖК-дисплеем XY-L30A. На мониторе отображаются напряжение, процент и продолжительность заряда. На базе устройства реализована опция автоматического контроля заряда. Также имеется функция установки времени заряда, формат – 24 часа, максимальная продолжительность – 100 часов.
Данный контроллер заряда аккумулятора с Алиэкспресс адаптирован для работы со свинцово-кислотными аккумуляторами. Рабочие параметры и время зарядки отображаются на ЖК дисплее. В числе предлагаемых функций: автоматический контроль, установка времени, управление с мобильных устройств и ПК через последовательное подключение.
Рассчитан на входное напряжение в пределах 6-60В. Модель отличается высокой точностью отображения и управления – 0,1В. Уровень заряда отображается на ЖК-мониторе. Допускает установку уровней начального и конечного напряжения. Имеет компактные размеры 81*54*18 мм.
Встроенный промышленный микроконтроллер, на базе которой реализована 4-х ступенчатая функция широтно-импульсного преобразования PWM. Работает со свинцово-кислотными и гелиевыми аккумуляторными батареями. Рассчитан на напряжение 12-24В и силу тока 10A, 20A, 30A в зависимости от модификации. Все рабочие параметры отображаются на ЖК-дисплее. Также в числе достоинств модели – встроенная защита от короткого замыкания, обратная защита, защита от перегрузки. В процессе работы отмечен низкий уровень нагревания устройства.
Контроллер с PWM-функцией. На LED-индикаторе отображается входное и выходное напряжение, а также – уровень заряда батареи в реальном времени. Может подключаться и управляться с компьютера через USB-порт. Возможен выбор одного из трех режимов заряда – быстрый, стабильный и поддерживающий с опцией контроля заряда. Встроена защита от перезаряда, перегрузки и от короткого замыкания.
Модель контроллера заряда аккумулятора с Алиэкспресс с PWM-функцией в нескольких вариантах исполнения, в зависимости от силы тока 30A, 20A, 10A напряжением 12-24В и мощностью от 120 до 360Вт. Подходит для различных типов свинцово-кислотных батарей с таймером нагрузки. Установлен двойной светодиодный дисплей. Возможно подключение и управление через USB-порт. На базе контроллера реализована 4-ступенчатая зарядка Boost, ABS, Equalization, Float благодаря использованию промышленного микропроцессора STM 8. Имеется опция таймера и запоминания ранее настроенных параметров. Встроена защита от перегрева, обратного тока, короткого замыкания, разрядки и перегрузки. На устройство предоставляется гарантия производителя 12 месяцев.
Вам нужно войти, чтобы оставить комментарий.
Как выбрать или сделать самому контроллер заряда автоаккумулятора?
Аккумулятор вместе с генератором являются устройствами, обеспечивающими автомобиль электропитанием. От степени зарядки батареи зависит успешный старт машины и работа приборов, входящих в электрическую сеть при выключенном двигателе. Поэтому важно следить за ее зарядкой. Для контроля зарядки предназначен контроллер заряда автомобильной АКБ. В статье описывается принцип действия устройства, дается инструкция по изготовлению своими руками.
Если не контролировать зарядку, то недозаряд аккумулятора грозит тем, что в один прекрасный момент может не завестись двигатель, особенно в зимний период. Проверить напряжение на клеммах устройства можно с помощью мультиметра. Если говорит контрольная лампа заряда аккумуляторной батареи на приборной панели, это говорит о том, что у батареи низкая зарядка. Но горение лампочки малоинформативно.
Что такое контролер заряда аккумулятора и какие функции он выполняет?
Контроллер заряда аккумулятора — это специальное устройство, которое автоматически регулирует уровень тока и напряжения в устройстве. Заряд аккумулятора определяется разницей напряжения между двумя клеммами. Таким образом, контроллер предохраняет аккумулятор от избыточного перенапряжения и соответственно повреждения.
Однако, если рассуждать логически, многие приборы могут с легкостью обойтись без контроллера. Если подсоединить устройство напрямую к источнику напряжения, при этом контролируя силу тока и значение напряжения, можно избежать повреждений. Хотя в этом случае заряд устройства будет ниже — 70% от общей емкости аккумулирующего устройства. Таким образом, можно сделать вывод, что контроллер заряда позволяет зарядить устройство на 100%.
Если говорить о том, какие задачи выполняет контроллер, можно сказать:
Параметры выбора
Критериев выбора всего два:
Что такое контроллер и какие разновидности этого устройства существуют?
Стандартных схем контроллеров не существует, однако все они имеют схожие черты. Как правило, большинство из них включают в себя два подстроечных резистора, который контролируют максимумы и минимумы напряжения. Кроме этого, в каждом контроллере есть обмотка реле, которое контролирует диапазон границ. Таким образом, если в аккумуляторе установлена максимальная граница в 15 В, устройство не сможет генерировать энергию выше этого предела.
В зависимости от строения контроллеры могут быть:
Среди устройств, позволяющих контролировать данные параметры, различают:
Контроллеры типа ВКЛ/ВЫКЛ
Этот модуль выполняет функцию выключения аккумуляторов от источника при предельных нагрузках. На сегодняшний день, эти контроллеры используются довольно редко и считаются одним из самых примитивных. Принцип действия контроллера построен на постоянном контроле определенных значений генератора и плеча аккумулирующего устройства. Включение контроллера происходит тогда, когда напряжение на батарее будет ниже номинала, либо будет находиться в пределах параметров напряжения. Выключение устройства происходит в том случае, если напряжение превышает лимит нагрузки, которую может выдержать контроллер. Такие контроллеры широко используются в системах с прогнозируемой нагрузкой, к примеру, в системах аварийного освещения и сигнализации (контроллер заряда-разряда hcx-2366).
Функции
Контролеры созданы для:
Все параметры задают микросхеме или контролеру на этапе производства.
PWM контроллер
Микросхемы управления типа PWM являются самыми современными и многофункциональными с технической точки зрения. Такие устройства позволяют в автоматическом режиме отслеживать значения напряжения и силы тока. После того, как достигается максимально возможное значение, контроллер фиксирует его на плате для стабилизации аккумулирующего устройства. Благодаря этому, достигается максимальная емкость аккумулятора. Данный тип контроллеров имеет и другое название, которое встречается чаще — это ШИМ-контроллеры. Если расшифровать сокращенную аббревиатуру, то получится такое понятие как широтно-импульсный модулятор. Чаще всего такие устройства встречаются в теле- и радиотехнике. Кроме этого, их можно найти в некоторых бытовых приборах и импульсных блоках питания.
Принцип действия PWM контроллера
Напряжение от стандартной солнечной панели переходит по двум проводникам к стабилизирующему элементу. За счет этого, происходит выравнивание потенциалов входного напряжения. После этого напряжение поступает в транзисторы, которые стабилизируют входящие напряжение и ток. Вся система управляется за счет драйвера. Схема устройства включает в себя датчик температуры и драйвер. Данные устройства контролируются силовыми транзисторами, количество которых зависит от мощности устройства. Датчик температуры отвечает за состояние нагрева элементов контроллера. Обычно он находится на радиаторах силовых транзисторов, либо внутри корпуса. От этого его функциональность не меняется. Если температура превышает заданные границы, устройство автоматически отключается.
Способы подключения
Подключение завит от типа устройства.
Специально для пользователей, рядом с клеммами есть обозначения, что к ним подключать. Необходимо учесть строгую последовательность: 1. Подключите аккумулятор. 2. Включите предохранитель на плате, рядом с «+». 3. Вставьте контакты солнечных батарей. 4. Подсоедините контрольную лампу с напряжением 12 или 24 В.
Важно производить подключение в строгой последовательности, учитывая маркировки, нанесенные на клеммы и полярность проводов.
Подключение заметно отличается от ШИМ:
Последовательность и тип подключения будет незначительно отличаться:
Широтно-импульсный модулятор
MPPT контроллер — это модуль контроля электричества, который используется для генерации энергии на солнечных электростанциях. Микросхема устройства работает с максимальными значениями КПД и дает высокие показатели на выходе. Микросхема, в которую входит контроллер данного типа, достаточно сложная и включает в себя ряд устройств, которые выстраивают необходимый порядок контроля. Эта последовательность позволяет контролировать уровни напряжения и тока постоянно, при этом выдавая максимум мощности устройства на выходе. Главным отличием в конфигурации широтно-импульсного модулятора от PWM устройств считается то, что они способны активизировать свой солнечный модуль под погодные условия. Таким образом, мощность при любой погоде будет максимальная, независимо от продолжительности нахождения на солнце.
Изготовление платы
Для работы потребуется:
Для платы понадобится кусок текстолита размером 4Х6 сантиметра. Обрезать её в нужный размер лучше ножовкой по металлу. Потому что при работе ножницами текстолит может расслоиться и появятся грубые заусенцы.
Обязательно обрабатываем кромку мелкой наждачной шкуркой. Чтобы снять слой оксидной плёнки, очень аккуратно обрабатываем поверхность нулёвкой.
Последний подготовительный этап – обезжиривание. Но это перед тем как приложить распечатанную схему.
Как грамотно выбрать контроллер заряда аккумулятора?
Для того, чтобы выбрать нужный контроллер, необходимо определиться с функцией, которую будет нести данное устройство и с масштабом всей установки. Если предполагается сборка небольшой солнечной системы, которая будет контролировать бытовые приборы с мощностью не более двух киловатт, то достаточно установки PWM контроллера. Если же речь идет о более мощной системе, которая будет контролировать сетевое электричество и работать в автономном режиме, тогда необходима установка MTTP контроллера. Все зависит от напряжения которое поступает на контроллер аккумулирующего устройства. PWM-контроллера способны выдержать показатели до 5 кВт, в свою очередь MTTP-модули выдерживают до 50 кВт.
Режим КТЦ АКБ
При старте программы включается заряд АБ с током Is. Через 1 сек АБ переключается на разряд с током Ii. Еще через 1 сек АБ снова переключается на заряд. Так продолжается до тех пор, пока напряжение не достигнет Umax – программа останавливается. Индикация КТЦ выкл. Если напряжение стало выше Umax на 0.2 – остановка программы, индикация ERROR. Если ток заряда или разряда превысил установленные на 0.2 – остановка программы, индикация ERROR.
Если истекло время заряда (параметр H) – остановка программы, индикация ERROR в верхней строке. В нижней строке надпись Time out.
Выбранный режим после отключения от сети не запоминается. При включении всегда режим зарядка.
Как работают электронные модули солнечной батареи?
Микроконтроллеры, или электронные модули, которые являются неотъемлемым элементом солнечной батареи, предназначены для ряда функций, позволяющих сохранять энергию солнечной панели. Генерация энергии солнечной батареей обусловлена падением на ее поверхность солнечных лучей. Благодаря фотоэлементам, солнечных свет генерирует электрический ток. Полученная энергия попадает на контроллер заряда аккумулятора, который отслеживает потребление энергии. Данное устройство регулирует и устанавливает предельное значение силы тока и пропускает ее в аккумулятор-накопитель. Чисто теоретически, без контроллера заряда можно было бы обойтись. Таким образом, вся полученная энергия напрямую бы попадала в аккумулятор. однако, при этом возникал бы риск постоянных перегрузок системы, которые бы в скором времени выводили устройство из строя. Самым ярким примером такого устройства является литий-ионный аккумулятор, который устанавливается в телефонах, планшетах, зарядных устройствах для ноутбуков и других современных гаджетах.
Как сделать своими руками
Если нет возможности приобрести уже готовый продукт, то его можно создать своими руками. Но если разобраться в том, как работает контроллер заряда солнечной батареи довольно просто, то вот создать его будет уже сложнее. При создании стоит понимать, что такой прибор будет хуже аналога, произведенного на заводе.
Это простейшая схема контроллера солнечной батареи, которую создать будет проще всего. Приведенный пример пригоден для создания контроллера для зарядки свинцово-кислотного аккумулятора с напряжением в 12 В и подключением маломощной солнечной батареей.
Если заменить номинальные показатели на некоторых ключевых элементах, то можно применять эту схему и для более мощных систем с аккумуляторами. Суть работы такого самодельного контроллера будет заключаться в том, что при напряжении ниже, чем 11 В нагрузка будет выключена, а при 12,5 В будет подана на аккумулятор.
Стоит сказать о том, что в простой схеме используется полевой транзистор, вместо защитного диода. Однако если есть некоторые знания в электрических схемах, можно создать контроллер более продвинутый.
Данная схема считается продвинутой, так как ее создание намного сложнее. Но контроллер с таким устройством вполне способен на стабильную работу не только с подключением к солнечной батарее, а еще и к ветрогенератору.
Контроллер заряда аккумулятора
Пост опубликован: 22 апреля, 2020
Самодельный контроллер для зарядки аккумулятора – простой и надёжный
Купить контроллер для зарядки АКБ чрезвычайно просто, стоит он дёшево, но надёжность таких устройств внушает опасения. Неизвестно на чём в этот раз сэкономят китайские производители. А вот собранный своими руками контроллер зарядки аккумулятора, будет безотказным! Ведь собрали его не для продажи, а для долгой эксплуатации.
Назначение и схема зарядного контролера
Предлагаемый к самостоятельной сборке контроллер чрезвычайно простой, и поэтому безотказный. Он прекрасно дополняет альтернативные источники энергии, такие как ветрогенераторы или солнечные панели. Особых знаний в схемотехнике и пайке не потребуется. Разумеется, что если паяльник вы не пользовались по назначению, то лучше потренироваться на каких-то ненужных проводках, чтобы случайно не перегреть рабочие детали.
Установка полевого транзистора IRF 540 обусловлена тем, что сигнал от таймера NE 555 выходит с напряжением 5V, а реле 1N4007 12-тивольтовое.
Принципы работы контроллера заряда АКБ
После выставления нужных параметров на подстроечных резисторах и включении прибора в систему, работа контроллера происходит следующим образом:
ВАЖНО: данный контроллер заряда аккумулятора ориентирован за продление ресурса работы АКБ! Он строго лимитирует превышение уровня зарядки и разрядки. С этой задачей такая схема справляется на 100%!
Список деталей контроллера зарядки АКБ
1 Подстроечный резистор (установка нижнего предела ≈11,8 V);
2 Подстроечный резистор (установка верхнего предела ≈14,4 V (оба резистора на 10 kOm);
3 Таймер — Микросхема NE 555 + гнездо для микросхемы;
4 Стабилизатор напряжения LM7805 (5V);
5 Конденсатор неполярный 330 nF (на вход);
6 Конденсатор неполярный 100 nF (на выход);
7 Полевой транзистор IRF 540;
8 Биполярный NPN транзистор 2N3904;
9 Светодиоды индикации: синий и красный;
10 Реле 1N4007 (12 вольт 10 ампер);
11 Резистор 300 Om + провод для отключения «Режима заряда»(оформляется на корпусе);
12/12-1 Резисторы 100 Om + 330 Om (припаяны с обратной стороны);
13 На кнопку включения «Режима зарядки» (оформляется на корпусе);
14 Радиатор;
15 Резистор 1,5 kOm;
16 Резистор 39 kOm;
17 Резистор 6,2 kOm;
18 Резистор 30 kOm;
19/20/21 Резистор 1 kOm;
На этой схеме обозначены места фиксации каждой детали.
Изготовление платы
Для работы потребуется:
Для платы понадобится кусок текстолита размером 4Х6 сантиметра. Обрезать её в нужный размер лучше ножовкой по металлу. Потому что при работе ножницами текстолит может расслоиться и появятся грубые заусенцы.
Обязательно обрабатываем кромку мелкой наждачной шкуркой. Чтобы снять слой оксидной плёнки, очень аккуратно обрабатываем поверхность нулёвкой.
Последний подготовительный этап – обезжиривание. Но это перед тем как приложить распечатанную схему.
На лазерном принтере, перед распечаткой схемы, надо убрать функцию «Экономия тонера», чтобы отпечаток был насыщенным. Использование глянцевой бумаги предпочтительнее потому, что она менее гигроскопичная, и тонер не будет впитываться в структуру материала.
СОВЕТ: распечатайте на одном листе несколько одинаковых рисунков. Если что-то пойдёт не так, но под рукой всегда окажется дубликат.
Полученное изображение обрезаем в размер, не касаясь пальцами лицевой стороны снимка.
Расстелите на ровный стол салфетку, совместите снимок с текстолитом и аккуратно уложите этот «бутерброд» на подготовленную подложку.
Максимально разогретым утюгом придавите на 30-40 секунд заготовку. Без всяких движений, чтобы не было смещения, поднимите утюг. Теперь накройте бумажной салфеткой в 3-4 слоя, и ещё раз прижмите утюгом, примерно на 1 минуту.
Затем можно сделать несколько разглаживающих движений. Утюг снимаем, текстолит с пристывшим к нему листом фотобумаги на 2-3 минут опускаем в тёплую воду, чтобы отмокла целлюлозная основа.
Аккуратно снимаем бумагу и ватной палочкой смоченной в спирте удаляем её остатки. На фольгированном стеклотекстолите должен остаться тонер на месте будущих дорожек.
Травление платы контроллера зарядки АКБ
Предлагаемый состав для травления состоит из наиболее доступных реактивов и обладает хорошей химической активностью. Единственный его недостаток перед растворами на основе хлорного железа и медного купороса, это невозможность длительного хранения.
В 100 мл перекиси сначала растворяют 30 гр. лимонной кислоты, затем добавляют поваренную соль и перемешивают до тех пор, пока не останется кристаллов.
СОВЕТ: если нет перекиси водорода, то растворите 6 таблеток Гидроперита в 100 мл. воды.
Готовый реактив наливаем в пластиковый контейнер и аккуратно опускаем заготовку платы.
Лучше её положить лицевой стороной вверх, потому что образующиеся газовые пузырьки будут изменять скорость реакции на разных участках текстолита.
Рекомендуется чуть шевелить заготовку, касаясь её края зубочисткой или соломинкой. Можно чуть «помочь» травлению кисточкой. При температуре раствора 25-30˚C, процесс занимает 25-35 минут.
Протравленную заготовку промываем под струёй холодной воды, высушиваем и удаляем тонер нулёвкой. Работать абразивной шкуркой надо без нажима и фанатизма. Достаточно нескольких лёгких движений.
ВАЖНО: следите чтобы не удалить слой медной фольги!
Можно сделать несколько движений наждачной бумагой, а потом тщательно протереть поверхность салфеткой смоченной в уайт-спирите.
Финишная подготовка платы
Для сверления отверстий используют сверло 0,8 мм. Стеклотекстолит сверлиться достаточно легко, но всё равно следите, чтобы дрель была направлено строго вертикально, а рука не дрожала.
СОВЕТ: положите плату на деревянный брусок, просверлите два угловых отверстия по диагонали и через них зафиксируйте заготовку тонким сапожным гвоздиком или отточенной скрепкой. Остальные отверстия можно сверлить, удерживая дрель двумя руками.
После сверления нулёвкой надо аккуратно удалить заусенцы.
Для более лёгкого лужения дорожек, рекомендуется приготовить спирто-канифольный флюс. Для этого 5 гр. порошка канифоли, растворяют в 20 мл. спирта. Удобнее это делать в пузырьке от «лака для ногтей».
Спирто-канифольным флюсом покрывают всю поверхность платы, а затем тонким слоем наносят припой на медные дорожки.
По окончании лужения, канифоль необходимо удалить с поверхности платы. Так как канифоль на 90% состоит из дитерпеновых кислот, то её остатки вызывают коррозию металлов. Удаляют канифоль спиртом или ацетоном.
Пайка деталей на плату
Этот процесс описывать невозможно, необходимо просто по очереди устанавливать детали в свои гнёзда, и припаивать их. Если вы никогда до этого не паяли, то потренируйтесь на обрезках стеклотекстолита и кусочке медного проводка.
Очень важно не допустить перегрева деталей и не залить припоем соседние гнёзда и дорожки, чтобы не сформировалась перемычка. Тщательно контролируйте этот аспект пайки.
Перед установкой радиодеталей в посадочные гнёзда, нанесите на них спирто-канифольный флюс.
Сборка в корпус и проверка
Корпус подбирается индивидуально. Его можно склеить самостоятельно из пластика, или купить что-то более-менее подходящее. Места для вывода светодиодов и кнопок ручного управления определяют после фиксации платы. При желании, можно сделать отверстие для подстроечного резистора.
Не старайтесь сразу брать очень маленький корпус.
Для проверки контроллера заряда аккумулятора потребуется регулируемый преобразователь DC\DC, которым будет имитироваться напряжение на клеммах АКБ.
Нормально разомкнутый вывод реле, подключается к мультиметру в режиме прозвонки.
Когда аккумулятора заряжен, и нагрузка к нему подключена, то мультиметр подаёт непрерывный сигнал, а на контроллер горит синий светодиод.
Как только напряжение упадёт ниже выставленного предела, то включается зарядка. На контроллере заряда загорается красный светодиод, а на табло мультиметра меняется индикация.
Всё, контроллер заряда аккумулятора готов, можно пользоваться.
Вероятно, Вам также понравятся следующие материалы:
Спасибо, что дочитали до конца! Также Не забывайте подписываться на наш канал, Если статья Вам понравилась!
Следите за нами в твиттере: https://twitter.com/Alter2201
Делитесь с друзьями, оставляйте ваши комментарии
Добавляйтесь в нашу группу в ВК:
и предлагайте темы для обсуждений, вместе будет интереснее.