Какое напряжение на бобине автомобиля

Как измерить напряжение питания катушек зажигания (и не только их).

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Казалось бы, простейшая задача – проверить, какой реальный вольтаж питания катушки зажигания в нашей проводке на машине чтобы оценить состояние проводки, АКБ и генератора.

Ну что тут сложного? Берем мультиметр («тестер», мне это слово со времен СССР привычнее), ставим предел измерения в 20В, заводим мотор, замеряем, готово! Вот только получаем мы при этом полную чушь. Полнейшую и опасную, потому что эти цифры — всегда полное вранье.
И даже не потому, что тестер за 200р, да будь он хоть за миллион рублей, качественного ответа о состоянии питания катушек этот замер не даст никогда. Почему? Давайте разбираться.

Во-первых, и это самое главное, нас интересует замер напряжения под нагрузкой, но нагрузка у нас не простая (резистивная), а индуктивная и с выбросами напряжения с катушки до 300-350В.

Во-вторых, все тестеры показывают усредненное значение, делая ряд замеров за 1-2 секунды и показывая среднее математическое значение в дешевых моделях либо вычисляя более точное RMS / True RMS значение в дорогих моделях (но и они нам не помогут). И если у нас сначала идет просадка в момент заряда катушки до 9В, а потом приходят выбросы под 300 (короткие) то вполне можно получить усредненный ответ типа 14 или 15в и сделать ложный вывод о качественном состоянии проводки и питания.

Что же делать и как правильно замерить то? При том, что у нас есть только дешевый тестер и гаражные условия а не лаборатория или напичканный дорогими приборами автосервис (хотя, когда у сервисников нет мозгов, а их там нет в 95%, то им и приборы не помогают никогда).

Да все очень просто. Нужна «чистая» резистивная нагрузка без индуктивности и выбросов ЭДС при ее работе. С током потребления примерно равным катушке зажигания или чуть больше. И соберем мы ее из простых ламп накаливания фар, которых в каждом гараже уж точно найдется и ни одна.

Итак. Условно считаем, что катушка жрет 10А в конце своего заряда. В реальности там может быть и 8 и 12А, при неадекватно большом времени накопления и 20А можно получить, но мы будем считать что там 10А.

Лампа накаливания фары на 55Вт при 12.6В потребляет 4,36А, значит если мы возьмем три лампы в параллельном включении то получим 13А, как раз то что нам и нужно.

Если у вас другие лампы, пересчитайте сами по закону Ома потребляемые токи и соберите нагрузку из нужного кол-ва ламп.

Последовательность проверки получается такая:
1. Берем три лампы 55Вт и параллелим их. Используем провода не ниже 1 кв. мм. Лампы располагаем в какой-нить железной банке типа консервной чтобы не обжечься об них.

1.1 Отключаем катушку зажигания.

2. На незаведенной машине подключаем вольтметр к клеммам АКБ, получаем что-то около 12.6В на его индикаторе. АКБ без нагрузки может показать и 13В, но обычно есть какая-то малая нагрузка в виде ЭБУ. Если показывает около 13-13.2В, включите габариты.
3. Не отключая вольтметра от клемм АКБ, прямо на выводы АКБ (не на клеммы, а на сами штыри АКБ!) подключаем нашу «гирлянду» на 7-10 секунд, за которые нити ламп нагреются и потребляемый ток придет в норму.
4. Напряжение на вольтметре не должно упасть от начального более чем на 0.05В, т.к. 12-15А тока для хорошего АКБ – дробинка для слона. А если падает заметно больше, то или АКБ плохой, или вольтметр врет, но это вряд ли, они и за 200р умеют точно замерять давно уже.
5. Теперь, самое интересно. Берем разъем катушки зажигания и между его (+) питания на катушку и массой мотора (либо между выводом (-) на индивидуальных катушках типа ВАГ и т.п.). подключаем нашу нагрузку из ламп и замеряем напряжение. Желательно подержать секунд 10-20. Разница между напряжением этого замера и замера под нагрузкой на клеммах АКБ в идеале должна быть 2 июня 2020 в 12:42

Источник

Катушка зажигания – устройство и принцип работы

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Катушка зажигания (или модуль зажигания) – элемент системы зажигания автомобиля, который преобразует низковольтное напряжение бортовой сети в высоковольтный импульс. Высокое напряжение, возникающее в катушке зажигания, вызывает образование искры между электродами свечи зажигания и обеспечивает воспламенение топливно-воздушной смеси.

Устройство катушки зажигания
Катушка зажигания представляет собой трансформатор с двумя обмотками: первичной и вторичной, внутри которых находится стальной сердечник, а снаружи – изолированный корпус.
Первичная обмотка состоит из толстого медного изолированного провода и насчитывает от 100 до 150 витков. Обмотка имеет выводы 12 вольт.
Вторичная обмотка, как правило, располагается снаружи первичной. Она состоит из 15000-30000 витков тонкой медной проволоки. Такая система характерна как для модуля зажигания, для катушки зажигания сдвоенного типа, так и для индивидуальной катушки. Во вторичной обмотке создается импульсное напряжение до 35 000 вольт, которое и подается к свечам зажигания.
Катушка зажигания автомобиля масляного типа заполняется трансформаторным маслом, которое предохраняет ее от нагрева.

Принцип действия катушки зажигания
В первичную обмотку катушки подается низковольтное напряжение, которое создает магнитное поле. Время от времени это напряжение отсекается прерывателем, вызывая резкое сокращение магнитного поля и образования в витках катушек электродвижущей силы (ЭДС).
Согласно физическому закону электромагнитной индукции, величина образующейся таким образом ЭДС прямо пропорциональна количеству витков обмотки контура. Поэтому во вторичной катушке с большим количеством витков образуется импульс высокого напряжения, который по высоковольтным проводам (не применимо к индивидуальной катушке зажигания, установленной прямо на свечу) подается к свече зажигания. Благодаря импульсу, передаваемому катушкой, между электродами свечи зажигания образуется искра, которая воспламеняет топливно-воздушную смесь.
В устаревших моделях автомобилей напряжение от катушки зажигания подавалось ко всем свечам с помощью распределителя зажигания. Такая схема оказалась недостаточно надежной, поэтому катушки зажигания (их ещё называют свечными) современного автомобиля объединены в систему и распределены по одной на каждую свечу.

Виды катушек зажигания автомобиля
• Общая катушка зажигания используется в системах зажигания с распределителем или без него. Ее конструкция описана выше: первичная обмотка располагается снаружи вторичной, внутри которой находится сердечник. Катушки с сердечником заключены в стальной корпус. Импульс от вторичной обмотки подается на свечи зажигания.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

• Индивидуальная катушка зажигания используется в системах прямого электронного зажигания. В отличие от общей конструкции, в индивидуальных катушках первичная обмотка находится внутри вторичной. Индивидуальная катушка устанавливается непосредственно на свечу зажигания, поэтому высоковольтный импульс передается практически без потери мощности.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Рекомендации по эксплуатации модулей зажигания
1. Не оставляйте включенным зажигание без запуска двигателя на долгое время. Это существенно сокращает срок службы катушек зажигания.
2. Найдите время для очистки и проверки состояния катушки. Убедитесь в том, что крепления проводов в порядке, особенно важно проверить высоковольтный провод. Убедитесь также, что на корпус или внутрь его не попадает вода.
3. Не отсоединяйте высоковольтный провод от катушки голыми руками при включенном зажигании.

Источник

Дело в бобине: как устроена и как работает катушка зажигания

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Катушка зажигания – «потомственный немец». В 1851 году механик из Германии Генрих Румкорф (проживавший, правда, в Париже) изобрел катушку с прерывателем, вырабатывающую импульсы высокого напряжения, а в 1925 году компания Роберта Боша начала массово применять её как элемент батарейной системы зажигания бензинового автомобильного мотора. Давайте посмотрим, в каком виде катушка зажигания дошла до наших дней, и каковы особенности ее работы.

Маслонаполненная бобина

Б олее чем полвека эволюции карбюраторных бензиновых моторов с контактной системой зажигания катушка (или как ее часто называли шоферы прошлых лет – «бобина») практически не меняла конструкцию и облик, представляя собой высоковольтный трансформатор в металлическом герметичном стакане, заполненном трансформаторным маслом для улучшения изоляции между витками обмоток и охлаждения.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Неотъемлемым партнером катушки был трамблер – механический коммутатор низкого напряжения и распределитель высокого. Искра должна была появляться в соответствующих цилиндрах в конце такта сжатия топливовоздушной смеси – строго в определенный момент. Трамблер осуществлял и зарождение искры, и синхронизацию ее с тактами работы мотора, и распределение по свечам.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Классическая маслонаполненная катушка зажигания — «бобина» (что по-французски и означало «катушка») — была чрезвычайно надежна. От механических воздействий ее защищал стальной стакан корпуса, от перегрева – эффективный теплоотвод через заполняющее стакан масло. Однако согласно малоцензурному в оригинальном варианте стишку «Дело было не в бобине – идиот сидел в кабине…», получается, что надежная бобина таки порой подводила, даже если даже водитель не такой уж идиот…

Если посмотреть на схему контактной системы зажигания, то можно обнаружить, что заглушенный мотор мог останавливаться в любом положении коленвала, как с замкнутыми контактами прерывателя низкого напряжения в трамблере, так и с разомкнутыми. Если при предыдущем глушении мотор остановился в положении коленвала, в котором кулачок трамблера замыкал контакты прерывателя, подающего низкое напряжение на первичную обмотку катушки зажигания, то когда водитель по какой-то причине включал зажигание, не запуская мотор, и оставлял ключ в таком положении надолго, первичная обмотка катушки могла перегреться и сгореть… Ибо через нее начинал проходить постоянный ток в 8-10 ампер вместо прерывистого импульсного.

Официально катушка классического маслонаполненного типа неремонтопригодна: после сгорания обмотки она отправлялась в утиль. Однако когда-то давно на автобазах электрики умудрялись ремонтировать бобины – развальцовывали корпус, сливали масло, перематывали обмотки и собирали заново… Да, были времена!

И лишь после массового внедрения бесконтактного зажигания, при котором контакты трамблера сменились на электронные коммутаторы, проблема сгорания катушек почти исчезла. В большинстве коммутаторов было предусмотрено автоматическое отключение тока через катушку зажигания на включённом зажигании, но не запущенном двигателе. Иными словами, после включения зажигания начинался отсчет небольшого временного интервала, и если водитель за это время не заводил мотор, коммутатор автоматически выключался, защищая и катушку, и самого себя от перегрева.

Сухие катушки

Следующим этапом развития классической катушки зажигания стал отказ от маслонаполненного корпуса. «Мокрые» катушки сменились на «сухие». Конструктивно это была практически та же самая катушка, но без металлического корпуса и масла, покрытая сверху слоем эпоксидного компаунда для защиты от пыли и влаги. Работала она совместно с тем же самым трамблером, и часто в продаже можно было встретить и старые «мокрые» катушки, и новые «сухие» на одну и ту же модель авто. Они были полностью взаимозаменяемыми, соответствовали даже «уши» креплений.

Для рядового автовладельца в изменении технологии с «мокрой» на «сухую» не было, по сути, никаких преимуществ или недостатков. Если последняя, конечно, была изготовлена качественно. «Профит» получали только производители, поскольку изготовить «сухую» катушку несколько проще и дешевле. Однако если «сухие» катушки иностранных производителей автомобилей изначально продумывались и изготавливались достаточно тщательно и служили почти столько же, сколько и «мокрые», советские и российские «сухие» бобины снискали дурную славу, поскольку имели массу проблем с качеством и выходили из строя достаточно часто без каких-либо причин.

Так или иначе, сегодня «мокрые» катушки зажигания полностью уступили место «сухим», а качество последних даже отечественного производства практически не вызывает нареканий.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Были и катушки-гибриды: обычную «сухую» катушку и обычный коммутатор бесконтактного зажигания иногда объединяли в единый модуль. Такие конструкции встречались, к примеру, на моновпрысковых Фордах, Ауди и ряде других. С одной стороны, это выглядело в некоторой степени технологично, с другой – снижалась надежность и увеличивалась цена. Ведь два изрядно нагревающихся узла объединили в один, тогда как по отдельности они и охлаждались лучше, и при выходе из строя того или иного замена обходилась дешевле…

Ах да, еще в копилку специфических гибридов: на стареньких Тойотах нередко встречался вариант катушки, интегрированной прямо в распределитель трамблера! Интегрировалась она, конечно, не намертво, и при выходе из строя «бобину» можно было без труда снять и приобрести отдельно.

Модуль зажигания – отказ от трамблера

Заметная эволюция в катушечном мире произошла в период развития инжекторных моторов. Первые инжекторы имели в своем составе «частичный трамблер» – низковольтную цепь катушки уже коммутировал электронный блок управления двигателем, а вот искру по цилиндрам по-прежнему раздавал классический бегунковый распределитель, приводимый во вращение от распредвала. От этого механического узла стало возможным полностью отказаться, применив комбинированную катушку, в общем корпусе которой скрывались отдельные катушки в количестве, соответствующем числу цилиндров. Такие узлы стали называть «модулями зажигания».

Электронный блок управления двигателем (ЭБУ) содержал в себе 4 транзисторных ключа, которые поочередно подавали 12 вольт на первичные обмотки всех четырех катушек модуля зажигания, а те в свою очередь отправляли искровой импульс высокого напряжения каждая на свою свечу. Еще чаще встречаются упрощенные варианты комбинированных катушек, более технологичные и дешевые в производстве. В них в одном корпусе модуля зажигания четырёхцилиндрового мотора помещается не четыре катушки, а две, но работающие, тем не менее, на четыре свечи. В такой схеме искра на свечи подается попарно – то есть, на одну свечу из пары она приходит в нужный для воспламенения смеси момент, а на другую – вхолостую, в момент выпуска отработавших газов из этого цилиндра.

Следующим этапом развития комбинированных катушек стал перенос электронных коммутирующих ключей (транзисторов) из блока управления двигателем в корпус модуля зажигания. Вынос мощных и греющихся при работе транзисторов «на волю» улучшил температурный режим ЭБУ, а при выходе из строя какого-либо электронного ключа-коммутатора достаточно было заменить катушку, а не менять или паять сложный и дорогущий блок управления. В котором ещё часто прописаны индивидуальные для каждого авто пароли иммобилайзера и тому подобная информация.

Каждому цилиндру – по катушке!

Еще одно типичное для современных бензиновых автомобилей решение в сфере зажигания, существующее параллельно с модульными катушками, – это индивидуальные катушки для каждого цилиндра, которые устанавливаются в свечной колодец и контактируют со свечой непосредственно, без высоковольтного провода.

Первые «персональные катушки» были именно катушками, но потом в них переехала и коммутационная электроника – так же, как это произошло и с модулями зажигания. Из плюсов такого форм-фактора – отказ от высоковольтных проводов, а также возможность замены при выходе из строя только одной катушки, а не целого модуля.

Правда, стоит сказать, что в этом формате (катушки без высоковольтных проводов, монтируемые на свечу) существуют и катушки в виде единого блока, объединенные общим основанием. Такие, к примеру, любят использовать GM и PSA. Вот это воистину кошмарное техническое решение: катушки вроде бы отдельные, но при выходе из строя одной «бобины» приходится менять в сборе крупный и очень дорогой блок…

К чему мы пришли?

Классическая маслонаполненная бобина была одним из самых надежных и неубиваемых узлов в карбюраторном и ранних инжекторных автомобилях. Внезапный выход ее из строя считался редкостью. Правда, ее надежность, к сожалению, «компенсировал» неотъемлемый напарник – трамблер, а позже – и электронный коммутатор (последнее, правда, относилось только к отечественным изделиям). Пришедшие на смену «масляным» «сухие» катушки по надежности были сопоставимы, но все же несколько чаще выходили из строя без видимых причин.

Инжекторная эволюция заставила избавиться от трамблера. Так появились разнообразные конструкции, не нуждавшиеся в механическом высоковольтном распределителе – модули и отдельные катушки по числу цилиндров. Надежность таких конструкций еще более снизилась в связи с усложнением и миниатюризацией их «потрохов», а также крайне тяжелыми условиями их работы. Через несколько лет работы с постоянным нагревом от двигателя, на котором катушки были смонтированы, на защитном слое компаунда образовывались трещины, через них влага и масло попадали на высоковольтную обмотку, вызывая пробои внутри обмоток и пропуски зажигания. У отдельных катушек, которые установлены в свечных колодцах, условия работы еще более адские. Также не любят нежные современные катушки мойку моторного отсека и увеличенный зазор в электродах свечей зажигания, образующийся в результате длительной работы последних. Искра всегда ищет наиболее короткий путь, и нередко находит его внутри обмотки бобины.

В итоге на сегодняшний день наиболее надежной и правильной конструкцией из существующих и применяемых можно назвать модуль зажигания со встроенной коммутирующей электроникой, установленный на двигателе с воздушным зазором и соединенный со свечами высоковольтными проводами. Менее надежны раздельные катушки, установленные в свечных колодцах головки блока, и совсем неудачно, с моей точки зрения, решение в виде объединенных катушек на единой рампе.

Источник

Система зажигания автомобиля.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Основное назначение системы зажигания автомобиля является подача искрового разряда на свечи зажигания в определённый такт работы бензинового двигателя. Для дизельных двигателей под зажиганием понимают момент впрыска топлива в такт сжатия. В некоторых моделях автомобилей система зажигания, а именно ее импульсы подаются на блок управления погружным топливным насосом. Систему зажигания, по мере своего развития, можно разделить на три типа. Контактная система зажигания, импульсы у которой создаются во время работы контактов на разрыв. Бесконтактная система зажигания, управляющие импульсы создаются электронным транзисторным управляющим устройством – коммутатором, (хотя правильно его назвать генератором импульсов). Микропроцессорная система зажигания — это электронное устройство, которое управляет моментом зажигания, а также другими системами автомобиля. Для двухтактных двигателей, без внешнего источника питания используются системы зажигания типа магнето. Основана на принципе создания ЭДС при вращении постоянного магнита в катушке зажигания по заднему фронту импульса.

✔ Устройство системы зажигания

Все вышеперечисленные виды систем зажигания похожи между собой, отличаются только методом создания управляющего импульса. Так в систему зажигания входят:

1.Источник питания для системы зажигания, это аккумуляторная батарея (в момент запуска двигателя), и генератор (во время работы двигателя).

2.Выключатель зажигания – это механическое или электрическое контактное устройство подачи напряжения на систему зажигания, или по-другому – замок зажигания. Как правило, выполняет две функции: подачи напряжения на бортовую сеть и систему зажигания, подачи напряжения на втягивающее реле стартера автомобиля.

3.Накопитель энергии – узел предназначенный для накопления, преобразования энергии достаточной для возникновения электрического разряда между электродами свечи зажигания. Условно накопители энергии можно разделить на индуктивный и емкостный.

• Простейший индуктивный накопитель – это катушка зажигания, которая представляет собой автотрансформатор, первичная обмотка у него подключается к плюсовому полюсу и через устройство разрыва к минусовому. Во время работы устройства разрыва, например кулачков зажигания, в первичной обмотке возникает напряжение самоиндукции. Во вторичной обмотке образуется повышенное напряжение, достаточное для пробоя воздушного зазора свечи.

• Емкостный накопитель представляет собой емкость, которая заряжается повышенным напряжением и в нужный момент отдает свою энергию на свечу зажигания

4.Свечи зажигания, представляют собой устройство с двумя электродами находящимися друг от друга на расстоянии 0,15-0,25 мм. Представляет собой фарфоровый изолятор, насаженный на металлическую резьбу, в центре находится центральный проводник, который служит электродом, вторым электродом является резьба.

5.Система распределения зажигания предназначена для подачи в нужный момент энергии от накопителя к свечам зажигания. В состав системы входят распределитель, и(или) коммутатор, блок управления системой зажигания.

• Распределитель зажигания (трамблёр) – устройство распределения высокого напряжения по проводам, ведущим к свечам цилиндров. Обычно в распределителе собран и кулачковый механизм. Распределение зажигания может быть механическим и статическим. Механический распределитель представляет собой вал, который приводится в действие от двигателя и при помощи «бегунка» распределяет напряжение по высоковольтным проводам. Статическое распределение зажигания подразумевает под собой отсутствие вращающихся деталей. При таком варианте катушка зажигания присоединятся непосредственно к свече, а управление происходит от блока управления зажиганием. Если, например, двигатель автомобиля имеет четыре цилиндра, то и катушек будет четыре. Высоковольтные провода в данной системе отсутствуют.

• Коммутатор – электронное устройство для генерации импульсов управления катушкой зажигания, включается в цепь питания первичной обмотки катушки и по сигналу от блока управления разрывает питание, в результате чего возникает напряжение самоиндукции.

• Блок управления системой зажигания – микропроцессорное устройство, которое определяет момент подачи импульса в катушку зажигания, в зависимости от данных датчиков положения коленвала, лямбда-зондов, температурных датчиков и датчика положения распредвала.

6.Высоковольтный провод — это одножильный провод с повышенной изоляцией. Внутренний проводник может иметь форму спирали, для исключения помех в радиодиапазоне.

✔ Принцип работы системы зажигания

Рассмотрим принцип действия классической системы зажигания. При вращении вала привода трамблёра в действие приводятся кулачки, которые «разрывают» подаваемые на первичную обмотку автотрансформатора (бобину) 12 вольт. При пропадании напряжения на трансформаторе, в обмотке появляется ЭДС самоиндукции, соответственно на вторичной обмотке возникает напряжение порядка 30000 вольт. Высокое напряжение подается в распределитель зажигания (бегунок), который вращаясь попеременно подает напряжение на свечи в зависимости от такта работы двигателя внутреннего сгорания. Высокого напряжения достаточно для пробоя искровым разрядом воздушного зазора между электродами свечи зажигания.

Опережение зажигания нужно для более полного сгорания топливной смеси. Из-за того, что топливо сгорает не сразу, поджечь его необходимо немного раньше, до прихода в ВМТ. Момент подачи искры должен быть точно отрегулирован, потому что в ином случае (раннее или позднее зажигание) двигатель потеряет свою мощность, возможна повышенная детонация.

Источник

Зажигание ВАЗ классика (и не только), контактное, бесконтактное, двухконтурное. Теория и информация.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

В данной статье не может, и не будет, рассматриватся вся теория систем зажигания в бензиновых двигателях. Но будут приведены ссылки на источники использованные автором а также другие источники, в которых можно будет погрузиться в эту теорию с головой.

Цель данной статьи рассмотреть необходимость и способы перехода с контактной системы зажигания на более совершенные варианты. В следующих статьях я постараюсь подробней раскрыть некоторые вопросы.

Рассмотрим для начала устройство системы зажигания.

Начнём с терминологии:

Прерыватель-распределитель зажигания — электромеханическое устройство, обеспечивающее своевременную подачу импульсов высокого напряжения на свечи зажигания. Часто его называют трамблером.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Опережение зажигания — воспламенение рабочей смеси в цилиндре раньше, чем закончится такт сжатия.

Угол опережения зажигания (УОЗ) — угол поворота коленчатого вала двигателя от положения, соответствующего появлению искры на свече до прихода поршня в верхнюю мертвую точку.

Контактная система зажигания — система, в которой коммутация катушки зажигания обеспечивается механическим прерывателем.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Бесконтактная система зажигания — система, в которой коммутация катушки зажигания обеспечивается электронным модулем, управляемым электронным датчиком положения коленчатого вала — например, датчиком Холла (ВАЗ-2108) или магнитоэлектрическим (ГАЗ-2410).

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Электронный датчик положения коленчатого вала

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Прерыватель системы зажигания — механический выключатель в трамблере, непосредственно соединенный с первичной цепью катушки зажигания.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Бегунок — элемент трамблера, поочередно передающий высокое напряжение от катушки зажигания на высоковольтные провода, соединенные со свечами зажигания двигателя.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Угол замкнутого состояния контактов (УЗСК) — величина, показывающая, как долго контакты механического
прерывателя должны оставаться замкнутыми. Для классических Жигулей УЗСК составляет примерно 55 градусов. Правильно выбранный УЗСК дает катушке зажигания возможность набирать нужную энергию и полностью отдавать ее на свечи зажигания.

Системы зажигания так же могут быть одноконтурными (одна катушка на все цилиндры), двухконтурными(одна катушка на пару цилиндров), и с индивидуальными катушками на каждый цилиндр.
Заранее оговорюсь, что двухконтурная система имеет самые выгодные параметры при использовании на атмосферных моторах с невысокой степенью сжатия, и нераспределённым впрыском. Обладает хорошим соотношением цена/эффективность.
Высокими показателями энергии искры. Высокой надёжностью благодаря возможности установки катушки в более холодном и вибро-ненагруженном месте чем головка блока, по сравнению с индивидуальными катушками.

Контактная система зажигания является самым старым типом системы зажигания. На первых системах 2101 устанавливались распределители зажигания без вакуум корректора, с ручным “октан корректором” угла опережения зажигания.

Совместная работа центробежного и вакуумного регуляторов обеспечивает нужный угол опережения зажигания на всех режимах работы двигателя.

Октан-корректор предназначен для корректирования угла опережения зажигания при изменении октанового числа топлива.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Вакуумный же корректор обеспечивает изменение УОЗ в зависимости от разрежения во впускном коллекторе.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Вакуум-корректоры ВАЗ 2101-07 (“классика”) и ВАЗ 2121 (Нива) отличаются по характеристике, это нужно учитывать при замене одного на другой.

Центробежный регулятор обеспечивает изменение УОЗ при увеличении оборотов двигателя и как следствие сокращения времени на сгорание топлива.

Отличаются и характеристика центробежных регуляторов. Их можно менять преднатягом первой пружины и изменением свободного хода второй. Эта тема будет раскрыта в конце статьи. Пружины могут быть разные по жесткости от “классики” или например “восьмёрки”. К вопросу Жесткости пружин мы вернемся в конце статьи. Так же, это было рассмотрено в видеоматериале Евгения Травникова “Теория ДВС”. Ссылки в конце статьи.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Механический прерыватель предназначен для размыкания цепи низкого напряжения (цепи первичной обмотки катушки зажигания). При размыкании контактов во вторичной цепи катушки зажигания наводится высокое напряжение. Для защиты контактов от обгорания в цепь параллельно контактам включен конденсатор.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Контакты механического прерывателя являются самой большой бедой системы зажигания. Износ, и как следствие изменение УОЗ, дребезг контактов, и как следствие не четкий момент воспламенения, потеря энергии в увеличенном сопротивлении контактной группы из-за окисления и коксования паров масла, зависание на высоких оборотах двигателя, перебои зажигания, поломка пружины контактной группы.
Именно поэтому многие автовладельцы озадачены переходом на бесконтактную систему зажигания.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

При выборе как трамблеров контактных так и бесконтактных систем зажигания нужно иметь ввиду что они не взаимозаменяемы с некоторыми моделями

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

В скобках приведены распределители предлагаемые для замены. Не лишним будет уточнить, что распределитель Р125 отличается характеристикой центробежного регулятора от всех остальных распределителей. Установка вместо распределителя Р125, распределителей 30.3706-83 (без вакуум-корректора, с октан-корректором (монетка)), или 38.3706-01 / 30.3706-01 (с вакуум-корректором) благотворно сказывается на поведении мотора.

Как видно из приведённой таблицы, трамблеров есть два вида, с коротким валом и с длинным. Если же случилось так, что вам достался трамблер с длинным валом а блок у вас «низкий», тогда можно установить толстую алюминиевую шайбу.

Трамблер Р125, у которого отличается характеристика центробежного регулятора (см рис.) и отсутствует вакуумный регулятор, вместо него установлен ручной октан-корректор, можно использовать установив на него пружины центробежного регулятора от трамблеров 38.3706 / 38.3706-01 /30.3706-01 / 30.3706-83, или весь центробежный регулятор в сборе. Если автомобиль будет эксплуатироваться на средних и высоких нагрузках чаще чем на малых вакуумный корректор, отсутствующий на данном трамблере конструктивно, не сыграет сколько-нибудь существенной роли.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

В бесконтактной системе зажигания роль контактной группы играет датчик холла (или в некоторых аналогах инфракрасный оптический датчик, встречаются так же индуктивные датчики).

Сигнал от датчика поступает на электронный коммутатор который запитывает катушку зажигания.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

При такой схеме энергия искры выше, двигатель работает стабильней, и пропадает необходимость в периодической регулировке.

Мы избавились от самого проблемного узла. Теперь можно долго и счастливо ездить и не парится. Но в системе по-прежнему осталась одна катушка зажигания на 4 цилиндра, которая еле успевает заряжаться на высоких оборотах, и разносчик искры, который изнашивается, искрит, создаёт дополнительное сопротивление, и, в конце концов, пробивает изоляцию крышки распределителя на корпус. Двигатель троит, особенно в сырую погоду, свечи закидывает, на холостых оборотах глохнет, в общем, все как было с контактной системой.

Эти узлы при больших пробегах изнашиваются и разрушаются, нарушая работу системы зажигания, делая не возможной стабильную работу двигателя точную настройку системы зажигания, а значит и двигателя в целом.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Эту проблему можно решить на корню. А именно, установив полностью электронное, двухконтурное бесконтактное зажигание, построенное на модернизированной шторке датчика холла, двухканальном коммутаторе, и двухконтурной катушке зажигания 2111.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Справедливости ради нужно сказать, что можно обойтись и без перехода на двухконтурную систему. Ведь при своевременном обслуживании и замене узлов система работает достаточно приемлемо. Разница в поведении автомобиля, при замене одноконтурной системы зажигания на двухконтурную, очевидно заметна лишь при плохом состоянии одноконтурной системы.

В то же время, нельзя не отметить преимущество бесконтактной системы зажигания — большая энергия искры. За счёт того что в БСЗ катушек две, а значит в два раза больше времени на заряд катушки, в два раза меньше нагрузка на эти самые катушки, и, как минимум в два раза, больший искровой зазор, так как искра одновременно проходит через две свечи, что увеличивает пробивное напряжение. Это становится возможным благодаря увеличению времени заряда катушки. Следует иметь ввиду что при переходе на двухконтурную систему зажигания, ввиду использования катушки с большей энергией, и увеличенным искровым зазором (две свечи на одной обмотке, вместо одной) и отсутствия резистора бегунка, следует использовать свечи с резисторами и провода свечей с сопротивлением. Подробнее этот вопрос будет рассмотрен в следующих статьях.

Для перехода на такую систему потребуется:
1. Распределитель зажигания ВАЗ-2101/2103 (в зависимости от того какой у вас блок двигателя) бесконтактный, если у вас он ещё не установлен.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Есть производителя СОАТЭ, есть МЗАТЭ (рекомендую брать МЗАТЭ)
2. Коммутатор двухканальный Астро

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Коммутаторы Ромб и Астро более надежные чем аналоги. У коммутаторов АСТРО есть особенности, например не подключен 6 вывод питания датчика Холла. Решение описано в следующей записи.

3. Проводка ВАЗ-2101-2107, М-2141 жгут коммутатора АЭНК, если у вас до этого была установлена контактная система зажигания.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

4. Катушка зажигания 2111-3705010

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Рекомендую брать BOSH, она стоит в два раза дороже, но это оправдано.
5. Колодка разъема ВАЗ-2110-15, 1118 катушки зажигания 42.3705 АЭНК

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

6. дополнительный провод с наконечником подобным наконечникам разъёма коммутатора, для подключения к 7 выводу коммутатора.

Шторки датчика холла необходимо изготовить новые (чертёж прилагается), так как двухканальный коммутатор формирует сигналы на 1-ую катушку по фронтам шторок, а на 2-ую по срезам, а не как раньше по одному сигналу от фронта каждой шторки на одну катушку. Либо отрезать две противоположные шторки и припаять их части к оставшимся шторкам. При этом необходимо быть очень точным, каждая шторка должна составлять 90°±5″ (90градусов плюс/минус 5 минут).

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

В одноконтурной и двухконтурной системе отсутствует односторонняя пульсирующая нагрузка на вал трамблёра, что значительно снижает вибрации и как следствие помехи и не точности в работе системы зажигания, продлевает срок службы подшипника трамблёра, и как следствие сальника – основной причины выхода из строя как электрических так и механических частей трамблёра. Механические части, такие как опорные оси грузиков, поворотная пластина, смазываются местно, и только малым количеством консистентной смазки. Попадание масла через вышедший из строя сальник приводит к вымыванию консистентной смазки и осаждению грязи на обильном слое жидкого масла. Исходя из вышесказанного, а так же из достаточной надёжности вакуумного и центробежного регулятора угла опережения зажигания можно считать бесконтактные одноконтурные и двухконтурные системы зажигания сверх достаточными как для автомобилей ВАЗ классика, так и для многих подобных.
Тем не менее, некоторые идут дальше, и устанавливают целые процессорные блоки управления двигателем. Ввиду высокой стоимости, сложности устройства, и достаточного числа источников рассматривающих этот вопрос в интернете, в данной статье я этот вопрос освещать не буду. Скажу лишь, что в таких процессорных системах форма графика характеристики регулировки УОЗ может быть любой, и меняется по различным параметрам. Это очень важно для двигателей с шатровой камерой сгорания и высокой степенью сжатия, как у современных двигателей. А для двигателей с клиновой камерой сгорания и низкой системой зажигания, как у ВАЗ классики детонация наступает раньше чем оптимальный УОЗ.
Ведь в отличии от качества смеси, УОЗ очень сильно зависит от конструктивных факторов двигателя. Причем оптимальный угол однозначно определяется максимальным моментом двигателя (при условии что топливо уже настроено). Однако сам диапазон допустимых углов невелик и влияние угла на мощность гораздо меньше чем влияние качества смеси. Это влияние в основном определяется конструктивом камеры сгорания двигателя. А именно расстоянием которое фронт пламени проходит от свечи до самого удалённого участка камеры. Например на двигателях с клиновой камерой сгорания (где свеча вкручивается «с боку» (ВАЗ-2101-07; ВАЗ2108(8кл.)), где значения оптимального УОЗ как правило очень велики (35° на 6000об/мин) влияние УОЗ на мощность так же очень велико и составляет около 1% на градус.
Однако, в подобных двигателях УОЗ как правило всегда находится за гранью детонации, т.е. фактором настройки УОЗ в таком двигателе должна выступать детонация а не мощность.

Какое напряжение на бобине автомобиля. Смотреть фото Какое напряжение на бобине автомобиля. Смотреть картинку Какое напряжение на бобине автомобиля. Картинка про Какое напряжение на бобине автомобиля. Фото Какое напряжение на бобине автомобиля

Ввиду этого, стремление к как можно более точному огибанию кривой детонации снизу, на данном типе двигателей, вряд ли даст существенный прирост. Из этого же графика видно, что повышение октанового числа топлива и/или степени сжатия, в некоторых пределах, с последующей корректировкой начального УОЗ, позволит реальному графику УОЗ быть существенно ближе к оптимальному (см. кривую 5 и 4 рис.). Половина графика будет немного ниже оптимального, а вторая половина выше.
Даже у штатного механизма центробежного регулятора, не прибегая к помощи контроллеров и процессоров с датчиками, есть возможность изменить наклоны характеристики УОЗ путем изменения преднатяга первой пружины и свободного хода второй. Изменять жесткость пружин не рекомендуется, ввиду резкого изменения характеристик регулятора. Более того, исправный штатный центробежный регулятор трамблера обладает оптимальной характеристикой для заводской конфигурации мотора. Какие либо изменения требуются только при внесении конструктивных изменений в двигатель. Для штатного же двигателя достаточно заменить пружины, потерявшие жесткость, на новые.

Проверить Жесткость пружины можно в домашних условиях. Достаточно иметь несколько грузов, и штангенциркуль или на крайний случай линейку. Подвешивая на пружину закреплённую вертикально груза и замерять её удлинение.
k = (масса*10) / удлинение в метрах.
Расстояние между опорами пружины 1 – 21,6 мм
Расстояние между опорами пружины 2 – 21,4 мм
Ход штифта в окне — 3,1 мм
Пружина 1 – диаметр 6,3 мм, Длина 22,5 мм, Жесткость 350 г/мм
Пружина 2 – диаметр 5,4 мм, Длина 24 мм, Жесткость 460 г/мм

Каждый сам должен решить какая система ему подходит исходя из поставленных задач, исходных параметров (состояние автомобиля в целом, состояние двигателя, состояния системы зажигания, пробегов совершаемых автомобилем за год, стоимости автомобиля и его рентабельности), и возможности и желания автолюбителя заниматься данными переделками.

Мой личный выбор тоже не однозначен, на двух моих автомобилях ВАЗ-2101 установлены разные системы зажигания. На первом автомобиле установлена бесконтактная одноконтурная система зажигания, и в ближайшее время будет установлена двухконтурная. А на втором автомобиле установлен почти заводской вариант. Почему почти. Потому что вместо распределителя Р125, применён собранный из Р125 и 38.3706 аналог 30.3706-83, т.е. распределитель с центробежным регулятором УОЗ и ручным октан-корректором, без вакуумного регулятора. Оба двигателя работают исправно и приемлемо.

Данная статья лишь попытка поместить основные моменты и тезисы в одном месте. Несмотря на кажущуюся легкость, эта статья далась тяжело. Поэтому прошу отнестись с пониманием к возможным огрехам.
В следующих статьях постараюсь разобрать подробней все то чему здесь не было уделено должного внимания.

Источники:
1. Статья «Устройство контактной системы зажигания.»: systemsauto.ru/fire/contact.html
2. Интернет версия журнала «За Рулём», «Зажигательная физика — опережение, трамблер и УОЗ.»: www.zr.ru/content/article…-vystavit-zazhiganie-uoz/
3. Статья с DRIVE2, WerWolf-DVS, Евгений Травников, «Двухконтурное зажигание» www.drive2.ru/l/288230376153184012/
4. Статья с DRIVE2, Alex Hrabovy, «Тонкая настройка зажигания: немного об УОЗ.»:
www.drive2.ru/l/2352842/
5. Статья «Зажигание без секретов» www.autoelite.ru/articles/zajiganiesix.php
6. «Автомобили «Жигули» моделей ВАЗ-2101-2102-21011-21013. Устройствои ремонт» В.А.Вершигора, издание второе, Москва, «Транспорт» 1990.
7. «Автомобили «Жигули» моделей ВАЗ-2103-2106. Устройствои ремонт» В.А.Вершигора, производственное издание, Москва, «Транспорт» 1986.
8. «Каталог деталей легкового автомобиля «Жигули» (моделей ВАЗ-2101, ВАЗ-2102, ВАЗ-2103).» М., Машиностроение, 1976.
9. ¬«-/————/-(-/——-/-ВАЗ-21011-/——/-)-/———/-.» 1977.
10. «Каталог деталей автомобиля ВАЗ-2105». 1985.
11. «Автомобили мира 160 регулировочных параметров.» Москва «ВТУЗ», 1995.
12. «Устройство и эксплуатация автомобилей «Жигули» и «Москвич».» Издание третье. Москва. Издательство ДОСААФ СССР 1987.
13. «Мой автомобиль «Жигули.» Издание второе. Москва «Транспорт», 1980.
14. Журнал «Сделай сам.» «Советы автолюбителям» 10’89. И.С.Туревский. Издательство «Знание» Москва.
15.



Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *