Как узнать протокол эбу автомобиля
Протоколы стандарта OBD2
1. OEM (протокол производителя).
Коммутация +12в. при включении зажигания.
2. Шина + (Bus positive Line). SAE-J1850 PWM, SAE-1850 VPW.
3. —
4. Заземление кузова.
5. Сигнальное заземление.
6. Линия CAN-High высокоскоростной шины CAN Highspeed (ISO 15765-4, SAE-J2284).
7. K-Line (ISO 9141-2 и ISO 14230).
8. —
9. Линия CAN-Low, низкоскоростной шины CAN Lowspeed.
10. Шина — (Bus negative Line). SAE-J1850 PWM, SAE −1850 VPW.
11. —
12. —
13. —
14. Линия CAN-Low высокоскоростной шины CAN Highspeed (ISO 15765-4, SAE-J2284).
15. L-Line (ISO 9141-2 и ISO 14230).
16. Питание +12в от АКБ.
Существует два типа протокола J1850. PWM является высокоскоростным и обеспечивает передачу информации со скоростью 41,6 Кбайт/с. Он применяется в автомобилях марок Ford, Jaguar и Mazda. В протоколе PWM сигналы передаются по двум проводам, подсоединенным к 2 и 10 контакту диагностического разъема.
Данный протокол разработан компанией ISO. Он не такой сложный, как протоколы J1850 и не требует в использовании специальных коммуникационных микропроцессоров, но, с другой стороны, обеспечивает довольно медленную передачу данных со скоростью 10 Кбайт/c. Протоколы ISO 9141 и ISO 14230 схожи по физической реализации обмена информацией, но различаются ее использованием. Поэтому сканер ISO 9141, обычно может работать и с ISO 14230, но не наоборот.
В протоколе ISO 9141-2 сигналы передаются по 7 контакту (К-линия) и опционально по 15 контакту (L-линия). К-линия является двунаправленной (т.е. передает данные в обе стороны), L-линия однонаправленная и используется лишь для соединения ЭБУ и сканера, после чего линия L переходит в состояние логической единицы.
Физический уровень передачи информации в протоколах ISO 9141 и ISO 14230 заключается в одновременной передачи ЭБУ специального 8-битного кода по К- и L-линиям со скоростью 5Б/сек. Если код правильный, то ЭБУ посылает сканеру 8-битный код со скоростью последующего соединения. Затем передается еще два кода с информацией о последующем соединении и расположении К- и L-линий. Сканер возвращает отражение этих кодов в ЭБУ. На этом процесс распознавания окончен.
ISO 14230-4 (др. название Keyword Protocol 2000)
На физическом уровне данный протокол идентичен ISO 9141, но является еще более медленным (скорость передачи данных от 1,2 до 10 Кбайт/c в быстрой версии).
CAN-протокол был разработан компанией Bosch для автомобильного и промышленного применения. В рамках стандарта OBD2 протокол использует линии CAN High и CAN Low, т.е. 2 контакта для обмена сигналом: 6 и 14. Является самым скоростным и совершенным. Сейчас данный протокол используется на большинстве современных автомобилях. Стандарт CAN не регламентирует определенной скорости работы для каждой шины в автомобиле. С помощью отдельных и встроенных микроконтроллеров есть возможность менять ее от 20 Кбит/c до 1 Мбит/с.
K-LINE, OBD2, ELM327 — разбор протокола
В первую очередь адресовано тем, кто хочет сделать свою поделку, выводя какие либо данные на экранчики, лампочки и стрелочки, посредством ардуины, атмела или какой либо другой базы, понимая, что нужно тыкаться в шину диагностики и еще не понимая, как это собрать и как заставить бежать данные из машины в экран своего бортовика.
Сначала общее описание одной из широко распространенных схем использования шины диагностики для вывода информации на экраны гаджетов:
В шину диагностики втыкается адаптер ЕЛМ327 и по воздуху он соединяется с планшетом, телефоном, смартом, где установлена и запущена программа TorquePro
Для того, что бы понять что на картинке, нужно знать следующие вещи:
Протокол ОБД2 из википедии. ru.wikipedia.org/wiki/OBD-II_PIDs
Протокол ОБД2 из википедии, более подробный en.wikipedia.org/wiki/OBD-II_PIDs
Протокол ISO9141-2 embeddedsystem.ru/index.p…=protokoly-standarta-obd2
С поиском протколов уже гораздо все хуже. Так как у меня этот протокол, так и буду описывать только его.
OBD2 распиновка — prohelps.ru/raspinovka-obd2-razema/
ELM327, описание АТ команд — www.sparkfun.com/datashee…ts/ELM327_AT_Commands.pdf
А теперь подключаем анализатор к тестовому компьютеру двигателя Toyota 2ZZ-GE, и «разбираем» по полочкам данные. Они такие:
Хоть и описание протокола в документах есть, но производители могут его немного видоизменять, менять скорости, какие либо тайминги и т.д., так что рабочий лог с рабочей железки и есть самый верный источник информации.
Все, после этого считается, что все подружилось, и можно отправлять команды запросов и получать ответы на эти запросы.
4. — Пример запроса «Температура охлаждающей жидкости» Первый отправляется хeдер. Это значение, которое в Torque указано командой ATSH. Далее, согласно стандарту ОДБ передается 0x01. Show current data — Считывание текущих параметров работы системы управления. После него идет сам пид датчика. Для запроса температуры ОЖ он имеет значение 0х05 Завершает запрос байт контрольной суммы. Если запрос был успешным, то ECU ответит. Если что то в запросе будет не то, то ECU просто промолчит. Ответ:
5. — Ответ начинается с хeдера ECU. Для режима опроса датчиков он всегда один и тот же, для других режимов (чтение ошибок и т.п.) он другой. После этого следует номер запрашиваемого пида для проверки и значение показания датчика. Завершает ответ байт контрольной суммы. Все.
Формула расчета показания датчика есть в таблице описания протокола ОБД на Википедии.
Данные ответа могут быть различной длинны, например в два байта, или как запрос на активные пиды у меня дает ответ в 10 байт.
Таблица пидов не всегда соответствует тому, что там написано. Производители могут что то сами мутить с адресами и отходить от стандартов. К примеру, на моторах 1ZZ-FE пид данных температуры АКПП имеет значение 0хВ4 с ответом в два байта с формулой расчета (А/256)-40, он не виден в запросе списка пидов и не выделяется цветом активного датчика в Torque
Подсчет контрольной суммы обычный классический, пример:
0х82+0х13+0хF1+0x01+0x05=0x 01 8C
Все данные запроса или приема суммируются и в итоге подсчета отсекается все, кроме первых двух бит
Ради интереса, срисовал передающую часть K-Line шины электросхемы ECU 2ZZ-GE:
Можно сказать, что схема имеет вид «открытый коллектор» с цепями защиты и легкой подтяжкой к шине питания.
Как узнать протокол эбу автомобиля
Диагностика бортового оборудования OBD-II
Назначение выводов разьема приведено в таблице. Использование контактов 1, 3, 8, 9, 11-13 стандартом SAE не определо и производили могут использовать их по своему усмотрению.
Контакт | Назначение |
---|---|
1 | Не определен |
2 | Положительня линия SAE J1850 |
3 | Не определен |
4 | Корпус |
5 | Общий |
6 | CAN(H)ISO 15765 |
7 | K линия ISO 9141/14230 |
8 | Не определен |
9 | Не определен |
10 | Отрицательная линия SAE J1850 |
11 | Не определен |
12 | Не определен |
13 | Не определен |
14 | CAN(L) ISO 15765 |
15 | L линия ISO9141/142300 |
16 | +12 вольт батареи |
Что может дать OBD-II? Достаточно много, он позволяет определять и стирать коды неисправности, контролировать параметры работы двигателя в реальном времени, считывать информацию о серийном номере автомобиля и пр. Однако для чип-тюнинга производители используют собственные нестандартные проколы достула к ЭБУ, совместимые по электрических параметрам с ISO 9141/14230, например KW1281 (Audi, Volkswagen, Seat, Skoda), KW71 (BMW), KW82 (Opel). В новых автомобилях используется CAN протокол как для OBD-II так и для чип-тюнинга.
Выводы разъемы для Toyota/Lexus, источник pinoutsguide.com
Поддерживает ли мой автомобиль OBD-II?
Как определить какой протокол поддерживает электронным блоком управления автомобиля? Первое – можно поискать информацию в Инернете, хотя там много неточной и непроверенной информации. К тому же, многие автомобили выпускаются для разных рынков с различными протоколами диагностики. Второе – найти разьем и посмотреть какие контакты в нем присуствуют. Разьем обычно находистя под приборной панелью со стороны водителя. Протокол ISO 914-2 или ISO 14230-4 определяется наличием контакта 7 и отсуствием контактов 2 и 10, как показано в таблице. Замечу, что контакта 15 скорее всего не будет, так как L линия сегодня почти не используется.
Протокол | Pin 2 | Pin 6 | Pin 7 | Pin 10 | Pin 14 |
---|---|---|---|---|---|
ISO 9141/14230 | + | ||||
J1850 PWM | + | + | |||
J1850 VPW | + | ||||
ISO 15765 CAN | + | + |
EOBD стал стандартом в Европе начиная с 2001 года, а для дизельных двигателей начиная с 2004. Если ваш автомобиль выпущен до 2001 года то он может вообще не поддерживать OBD даже при наличии соответсвуещего разьема! Евросоюз даже оштрафовал Peugeot за не соответвие EOBD стандарту и после 2001 года. Например, Renault Kangoo 99 года не поддерживает EOBD, а Renault Twingo поддерживает! Те же самые автомобили сделанные для других рынков, например Турции, могут тоже не быть совместимыми с OBD протоколом. Вот далеко не полный список ЭБУ до 2001 года которые могут не поддерживать OBD:
OBD II Руководство пользователя
$02 (Freeze Frame)
$03 (Read Stored DTC)
Сканер производит запрос на считывание кодов неисправностей из памяти блока управления, а блок соответственно эти коды либо выдает, либо пишет, что их нет. Вполне традиционная и наиболее употребляемая диагностами всего мира процедура. Для кодов стандарта OBD II была разработана удобная и информативная система обозначений – буква и четыре цифры (см. рис 1). Эту систему безоговорочно приняло большинство автопроизводителей, причем не только для OBD II, но и для ОЕМ-протоколов. Первая позиция (то есть буква) обозначает тип системы – P (Powertrain), C (Chassis), B (Body) и U (Network). На рынке пока не так много автомобилей, у которых токсичность зависит от работы, например кузовных систем (хотя это абсолютно реально!). Как уже говорилось выше, практическое использование протокола OBD II пока в большей степени ориентировано на силовой агрегат, поэтому речь пойдет о кодах группы Р. Вторая позиция отвечает за степень «крутизны» кода. Все коды с нулевым расширением (Р0) являются базовыми (их еще называют Generic). Один и тот же базовый код описывает одинаковую неисправность, вне зависимости, с какого автомобиля производится считывание. Например, код Р0102 означает одну и ту же проблему для любого автомобиля, поддерживающего требования OBD II / EOBD – низкий уровень сигнала датчика расхода воздуха. Сканер уровня GST может считывать и расшифровывать только коды группы P0. Расширенные коды (Р1ххх, Р2ххх и т.п.), даже если имеют одинаковый номер, имеют разную расшифровку для разных производителей. Например, для Mazda код P1101 означает отклонения от нормы уровня сигнала датчика расхода воздуха, а аналогичный код для Mitsubishi – наличие проблем в цепи вакуумного соленоида противо-буксовочной системы. Пока такие коды являются привилегией производителей автомобилей и это, конечно, создает проблемы для независимых СТО. Расшифровка ОЕМ-кодов под силу только весьма продвинутым OBD-II приборам, хотя следует признать, что даже хорошие универсальные сканеры, работающие по заводским протоколам с этой задачей справляются далеко не всегда (дилерские приборы естественно не в счет). Однако постепенно ситуация меняется в лучшую сторону. Третья позиция (или вторая цифра) в обозначении кода призвана идентифицировать определенную функцию, выполняемую блоком управления, либо подсистему блока, а именно: 1 – измерение нагрузки и дозирование топлива; 2 – подача топлива, система наддува; 3 – система зажигания и регистрация пропусков воспламенения смеси; 4 – системы уменьшения токсичности; 5 – система холостого хода, круиз-контроль, система кондиционирования; 6 – внутренние цепи и выходные каскады блока управления; 7 и 8 – трансмиссия (АКП, сцепление и т.п.) Ну и, наконец, четвертая и пятая позиции – это собственно номер кода, идентифицирующий цепь или компонент.
$04 (Clear/information)
$05 (O 2 monitoring test results)
$06 (Monitoring test results for noncontinuously monitored systems)
$07 (Monitoring test results for continuously monitored systems)
$08 (Bidirectional controls)
$09 (Vehicle information)
Описание интерфейса универсального сканера ELM327.
Схема подключения сканера ELM327.
PID’ы Toyota/Lexus.
Самостоятельная Диагностика OBD II — ВСТУПЛЕНИЕ* (неудача)
Всем привет!
Вообщем решил приобрести себе OBD II кабель для диагностики.
Долго выбирал…прикидывал… правда не дочитал немного и ошибся.
Да бы не совершать Вам таких ошибок при выборе и покупке обращайте внимание на:
Основное правило — убедитесь, что в Вашем автомобиле есть разъём OBDII
Он установлен почти на всех автомобилях из Европы и США с годом выпуска от 1996 г., и большинством автомобилей из Японии с годом выпуска от 2003 г. Также адаптер совместим с автомобилями из Китая, оснащёнными разъёмом OBDI, но бывают и редкие исключения. Если Вы не знаете как выглядит разъём OBDII, проверить его наличие достаточно просто: найдите под капотом автомобиля или в дверном проёме идентификационную наклейку или металлическую пластину. На ней должно быть обозначение «OBD II» или «OBD2».
Если же колодка и распиновка не подходит то возможно вам подойдет K-line адаптер
Сегодня на рынке очень много моделей, марок и фирм разных адаптеров, поэтому выбор только за вами.
Так как тема шла о ВАЗ 21099, то говорить мы будем только о ЭБУ ЛАДА и ВАЗ семейства 2108-2115.
Что такое ЭБУ (ЭСУД)?
Электронный блок управления двигателем (ЭБУ) – «компьютер», управляющий всей системой автомобиля. ЭБУ влияет как на работу отдельного датчика, так и на весь автомобиль. Поэтому, электронный блок управления двигателем очень важен в современном автомобиле.
ЭБУ чаще всего заменяется следующими терминами: Электронная система управления двигателем(ЭСУД), контролёр, мозги, прошивка. Поэтому, если вы услышите один из этих терминов, то знайте, что речь идёт о «мозгах», о главном процессоре вашего автомобиля. Иными словами, ЭСУД, ЭБУ, КОНТРОЛЁР – это одно и то же.
Поэтому важна сама распиновка (с чем я и ошибся вообщем при покупке)
По основным принципам разными являются Распиновки ЭБУ следующих моделей:
Январь 4 и GM
Bosch MP7.0 / M1.5.4
Январь 5.1 / VS5.1
Январь 7.2/M7.9.7
Bosch M17.9.7 (ВАЗ)
M74
Стандарт OBD-II: Диагностический коннектор
Внешний вид коннектора и колодки диагностики.
Вообще прошивок много очень и список их перечислять будет скучным.
(читайте в интернете)
2) Мы выбрали адаптер, купили, чешим руки диагностировать во всю.
Но прежде нам понадобятся программы для удобной и бесперебойной работы с этими адаптерами и «мозгами» нашего авто.
Их так же большое количество и различаются они по своему.
НЕБОЛЬШОЙ СПИСОК ЭТИХ ПРОГРАММ:
Все три типа описанных приборов имеют совершенно разный принцип работы, дают нам разную информацию и ни в коем случае не подменяют друг друга. Да, где-то получаемые с их помощью данные перекликаются, а где-то они у каждого уникальны. В принципе, можно обойтись без любого из этих приборов, а есть «спецы», которые вообще обходятся одной отверткой. Речь не об этом. Речь о том, что грамотный поиск дефекта основан на анализе информации. На измерениях, с коих, как известно, начинается наука.
Остальное оборудование носит в основном вспомогательный характер, хотя его наличие более чем желательно. Это:
Топливный манометр. О нем почитайте здесь.
Установка для очистки форсунок. Ультразвуковая с проливочным стендом (очень полезная вещь) или жидкостная.
Стенды для проверки свечей зажигания, модулей зажигания.
Качественный ампервольтомметр (мультиметр), желательно некитайского производства.
Хороший набор инструмента. Желательно фирменный.
Всевозможные пробники, хитрые приспособления, изготавливаемые мастером «под себя» и самостоятельно.
Дальше только дело рук и главное не торопитесь. читайте больше информации по вашему ЭБУ и руководства к нему и адаптеру.
ВСЕМ УДАЧИ! ПОДПИСЫВАЙТЕСЬ БУДЕМ ОБЩАТЬСЯ И ДЕЛИТЬСЯ ОПЫТОМ!
Как узнать протокол эбу
ISO 9141 / ISO 14230
SAE J1850VPW
ISO 15765-4 CAN
SAE J1939 (в частности Газель с дизельным двигателем Cummins ISF2.8s3129T)
VAG 1. 14, CE — Audi, Seat, Skoda, Volkswagen в основном с 1990 г.в.
Tiggo — Chery Tiggo, GreatWall Hover, BYD F3 и др. до 2008 г.в.
Авео 1, 2 — Chevrolet (Aveo, Lacetti, Rezzo, Lanos), Daewoo Nexia (после 2008 г.в.) — ЭБУ HV240, MR140, Sirius-D4, Sirius-D42
ДЭУ 1. 3 — Daewoo (Lanos, Nexia, Nubira, Leganza) до 2008 г.в. — ЭБУ IEFI-6, ITMS-6F, IEFI-S
Daihat — Daihatsu после 2000 г.в.
GreatWall — GreatWall Safe, Deer и др. до 2008 г.в. — ЭБУ Bosch
Honda — Honda до 2001 года выпуска
Mitsu 1. 5 — Mitsubishi с 12- и 16-контактными колодками диагностики
Consult1, Consult1D — Nissan до 2000 г.в., протокол «Consult-1»
Nissan — Nissan после 2000 года с 16-контактной колодкой диагностики
Opel 1. 8 — Opel 1997. 2003 г.в.
Рено — Renault Logan, Symbol, Kangoo — ЭБУ Siemens EMS3132
Sonata — — Hyundai Sonata V (EF new) с двигателями «BETA»
SsYong бен — SsangYong Rexton 2.8 (бензин)
SsYong диз1 — SsangYong Actyon 2.0 (дизель), Kyron 2.0 (дизель), Rexton 2.7 (дизель XDI)
SsYong диз2 — SsangYong Rexton 2.7 (дизель XVT)
Subaru — Subaru 1999. 2005 г.в.
Suzuki — Suzuki Escudo, Vitara
TOBD1 — Toyota до 1998 г.в.
Toyota — Toyota 1998. 2003 г.в.
CAN Toyota — Toyota 2004. г.в.
Микас 10.3 — Daewoo Sens, Zaz Chance (ЭБУ Микас 7.6; Микас 10.3)
«Январь» — Январь 5.1; Bosch 1.5.4 (N); VS 5.1 Ителма; Январь 7.2 (+)
«Бош М7.0» — Bosch MP7.0
«Бош М7.9.7» — Bosch М7.9.7 (+); М73
«М74» — Итэлма М74; Bosch ME17.9.7; Итэлма М75
«M74CAN» — М74 CAN
«Микас» — Микас 5.4, 7.1, 7.2; СОАТЭ 301, 302, 309; Ителма VS5.6
«Микас 11» — Микас 11; Ителма VS8
«Микас 11Е3» — Микас 11ET; Микас 11CR
«Микас 10.3» — Микас 10.3; Микас 12.3
«UAZ 1797» — Bosch ME 17.9.7, Bosch ME 17.9.71
«EDC16 IVECO» — Bosch EDC16C39 (дизельный двигатель Iveco F1A 2.3)
«EDC16 ЗМЗ»— Bosch EDC16C39-6.H1 (дизельный двигатель ЗМЗ-51432)
«М12» — Микас 12 Э9867.3763 001-01 (с двухтопливной системой питания)
«Крайслер» — «Daimler Chrysler» DCC 2.4L DOHC Motorola
«J1939» — Газель с дизельным двигателем Cummins ISF2.8s3129T
«Микас 7.6» — Микас 7.6; Микас 10.3
АПС-6 — иммобилайзер АПС-6, АПС-6.1, АПС-6.1 (комплектация «Люкс»)
САУО — система автоматического управления отопителем
САУКУ — система автоматического управления климатической установкой
Visteon — климатическая установка Visteon
ЭМУР — электромеханический усилитель руля (Калуга, Махачкала, Mando)
СНПБ — система надувных подушек безопасности
СНПБ Ш-Н — система надувных подушек безопасности «Chevrolet-NIVA»
Takata — подушки безопасности «Lada Granta»
Электропакет — блок управления электропакетом «Приора», «Норма», «Люкс», «Гранта»
МДВ — модуль двери водителя «Калина Люкс»
БУСО — блок управления стеклоочистителем
ABS 8 / 9 — антиблокировочная система Bosch ABS 8 / 9
Bosch ABS/ESP9 — система стабилизации Bosch ABS/ESP9
АКПП Jatco AY-K3 — автоматическая коробка передач «Lada-Granta»
ABS 5.3 — антиблокировочная система Bosch ABS 5.3
ABS 8 / 9 — антиблокировочная система Bosch ABS 8 / 9
Электропакет БУЭП 3163-6512020
Пульт климатической установки
AWD Dymos — раздаточная коробка Dymos с электронным управлением
Важно! для диагностики AWD «Dymos» необходимо выключить зажигание автомобиля, перейти в «Дисплей ТО — Ошибки/Диагностика — Доп. системы», выбрать строку «UAZ AWD Dymos(2)», нажать «SET» и незамедлительно включить зажигание автомобиля.
Любой автомобиль, оснащенный электронной системой впрыска топлива и электронным датчиком скорости.
OBD-II для диагностики автомобилей:
основная информация
Вместе с ростом экологического движения в начале 1990-х годов в США был принят ряд стандартов, которые ввели обязательность оснащения электронных блоков управления автомобилями (ЭБУ, ECU) системой за контролем параметров работы двигателя, имеющих прямое или косвенное отношение к составу выхлопа. Стандарты также предусмотрели протоколы считывания информации об отклонениях в экологических параметрах работы двигателя и другой диагностической информации из ЭБУ. OBD-II как раз и является системой накопления и считывания такой информации. Изначальная «экологическая направленность» OBD-II, с одной стороны, ограничила возможности по его использованию в диагностике всего спектра неисправностей, с другой стороны, предопределила его крайне широкое распространение как в США, так и на автомобилях других рынков. В США применение системы OBD-II (и установка соответствующей колодки диагностики) обязательны с 1996 г. (требование распространяется как на автомобили, производимые в США, так и на автомобили неамериканских марок, продаваемые в США). На автомобилях Европы и Азии протоколы OBD-II применяются также с 1996 г. (на небольшом количестве марок/моделей), но особенно — с 2001 г. для автомобилей с бензиновыми двигателями (с принятием соответствующего европейского стандарта — EOBD) и с 2004 г. для автомобилей с дизельными двигателями. Тем не менее, стандарт OBD-II частично или полностью поддерживают и некоторые автомобили, выпущенные ранее 1996 (2001) годов (pre-OBD автомобили).
Протоколы OBD-II предоставляют диагносту ряд стандартизированных функциональных возможностей (режимов диагностики — modes):
Режим 1 — Считывание текущих параметров работы системы управления (Mode 1 PID Status & Live PID Information). Всего стандартом поддерживается около 20 параметров. Однако, каждый конкретный блок управления поддерживает ограниченное количество из них (например, в зависимости от установленных датчиков кислорода). С другой стороны, некоторые автопроизводители поддерживают расширенные наборы параметров — например, некоторые автомобили концерна GM поддерживают более 100 параметров. Через систему OBD-II диагностики можно считать (основные параметры):
— режим работы системы топливной коррекции (PID 03 Fuel system status). При значении «Closed Loop» система работает в режиме обратной связи (замкнутой петли), при этом данные с датчика кислорода используются для корректировки топливоподачи. При значении «Open Loop» данные с датчика кислорода не используются для корректировки топливоподачи;
— расчетная нагрузка на двигатель (PID 04 Calculated Load);
— температура охлаждающей жидкости (PID 05 Coolant temperature);
— краткосрочная коррекция подачи топлива по банку 1/2 (PID 06/08 Short Term Fuel Trim Bank 1/2);
— долгосрочная коррекция подачи топлива по банку 1/2 (PID 07/09 Long Term Fuel Trim Bank 1/2);
— давление топлива (PID 0A Fuel pressure);
— давление во впускном коллекторе (PID 0B Manifold pressure);
— обороты двигателя (PID 0C Engine speed — RPM);
— скорость автомобиля (PID 0D Vehicle speed);
— угол опережения зажигания (PID 0E Ignition Timing Advance);
— температура всасываемого воздуха (PID 0F Intake Ait Temperature);
— расход воздуха (PID 10 Air Flow);
— положение дроссельной заслонки (PID 11 Throttle position);
— режим работы системы подачи дополнительного воздуха (PID 12 Secondary Air Status);
— расположение датчиков кислорода (PID 12 Location of O2 sensors);
— данные с датчика кислорода №1/2/3/4 по банку 1/2 (PID 13-1B O2 Sensor 1/2/3/4 Bank 1/2 Volts).
Как правило, для анализа работы конкретной подсистемы системы управления двигателем, достаточно одновременно контролировать 2-3 параметра. Однако, иногда требуется одновременно просматривать и большее число. Число одновременно контролируемых параметров, а также формат их вывода (текстовый и/или графический) зависят как от возможностей конкретной программы-сканера, так и от скорости обмена информацией с блоком управления двигателем автомобиля (скорость зависит от поддерживаемого протокола). К сожалению, наиболее распространенный протокол ISO-9141 (см. ниже) является и самым медленным из всех — при работе с ним невозможно просматривать с приемлемой частотой дискретизации более 2-4 параметров.
Режим 2 — Получение сохраненной фотографии текущих параметров работы системы управления на момент возникновение кодов неисправностей (Mode 2 Freeze Frame).
Режим 3 — Считывание и просмотр кодов неисправностей (Mode 3 Read Diagnostic Trouble Codes (DTCs)).
Режим 4 — Очистка диагностической памяти (Mode 4 Reset DTC’s and Freeze Frame data) — стирание кодов неисправностей, фотографий текущий параметров, результатов тестов датчиков кислорода, результатов тестовых мониторов.
Режим 5 — Считывание и просмотр результатов теста датчиков кислорода (Mode 5 O2 Sensor Monitoring Test Result).
Режим 6 — Запрос последних результатов диагностики однократных тестовых мониторов (тестов, проводимых один раз в течение поездки) (Mode 6 Test results, non-continuosly monitored) — эти тесты контролируют работу катализатора, системы рециркуляции выхлопных газов (EGR), системы вентиляции топливного бака.
Режим 7 — Запрос результатов диагностики непрерывно действующих тестовых мониторов (тестов, выполняемых постоянно, пока выполняются условия для проведения теста) (Mode 7 Test results, continuosly monitored) — эти тесты контролируют состав топливо-воздушной смеси, пропуски зажигания (misfire), остальные компоненты, влияющие на выхлоп.
Режим 8 — Управление исполнительными механизмами.
Режим 9 — Запрос информации о диагностируемом автомобиле (Mode 9 Request vehicle information) — VIN-кода и калибровочных данных.
Режим ручного ввода команды запроса диагностической информации.
Надо учитывать, что как далеко не на каждом автомобиле блок управления поддерживает все перечисленные функции, так и не каждый диагностический сканер для OBD-II может дать диагносту возможность использовать все перечисленные режимы.
Используемые протоколы и применяемость OBD-II-диагностики на автомобилях разных марок
В рамках OBD-II используются пять протоколов обмена данными — ISO 9141, ISO 14230 (также именуется KWP2000), PWM, VPW и CAN (также каждый из протоколов имеет несколько разновидностей — например, разновидности отличаются по скорости обмена информацией). В Интернете встречаются «таблицы применимости», где указываются перечни марок и моделей автомобилей и поддерживаемые ими OBD-II-протоколы. Ознакомиться с одной из таких таблиц можно и на нашем сайте. Однако, надо учитывать, что одна и та же модель с одним и тем же двигателем, одного года выпуска может быть выпущена для разных рынков с поддержкой разных протоколов диагностики (точно также протоколы могут различаться и по моделям двигателей, годам выпуска). Таким образом, отсутствие автомобиля в списках не означает, что он не поддерживает OBD-II, так же как и присутствие не означает, что поддерживает и, тем более, полностью поддерживает (возможны неточности в списке, различные модификации автомобиля и пр.). Еще сложнее судить о поддержке конкретной разновидности OBD-II-стандарта.
Общей предпосылкой для того, чтобы предположить, что автомобиль поддерживает OBD-II диагностику, является наличие 16-контактного диагностического разъема (DLC — Diagnostic Link Connector) трапециевидной формы (на подавляющем большинстве OBD-II автомобилей он находится под приборной панелью со стороны водителя; разъем может быть как открыт, так и закрыт легко снимаемой крышкой с надписью «OBD-II», «Diagnose» и т.п.). Тем не менее, это условие необходимое, но недостаточное! Получить справку о расположении разъемов (в том числе нестандартном) можно на странице «Техподдержка» нашего сайта. Также разъем OBD-II иногда устанавливается на автомобили, вообще не поддерживающие ни один из OBD-II-протоколов. В таких случаях необходимо пользоваться сканером, рассчитанным на работу с заводскими протоколами конкретной марки автомобиля — например, это касается автомобилей Opel Vectra B европейского рынка 1996-1997 гг. Для оценки применимости того или иного сканера для диагностики конкретного автомобиля необходимо определить, какой конкретно из OBD-II протоколов используется на конкретном автомобиле (если OBD-II вообще поддерживается). Для этого можно:
1. Посмотреть в технической документации непосредственно к данному автомобилю (но не в общем руководстве по данной марке/модели!). Также полезно осмотреть все идентификационные таблички на автомобиле — возможно наличие таблички «OBD-II compliant» (поддерживает OBD-II) или «OBD-II certified» (сертифицировано на поддержку OBD-II);
2. Посмотреть в информационной базе данных, типа Mitchell-on-Demand и т.п. Однако, это также не абсолютный способ, так как база может содержать неточности, включать информацию по автомобилям, выпущенным для другого рынка и т.п. Естественно, использование специализированных дилерских баз по отдельной марке повышает степень достоверности информации;
3. Использовать сканер, позволяющий определить, какой из OBD-II протоколов используется на машине. Из предлагаемых нами приборов автоматически это сможет сделать Х-431 и OZEN MOByDic 2600. С помощью комплекта ScanTool Вы сможете это сделать вручную путем последовательной смены используемых адаптеров и проверки наличия связи с ЭБУ автомобиля. Если никаких предположений по используемому протоколу нет, то начинать перебор стоит с протокола ISO как наиболее распространенного (либо с протокола, указанного для диагностируемой машины в таблице);
4. Осмотреть диагностический разъем и определить наличие выводов в нем (как правило, присутствует только часть задействованных выводов, а каждый протокол использует свои выводы разъема).
Назначение выводов («распиновка») 16-ти контактного диагностического разъема OBD-II (стандарт J1962):
04 — Chassis Ground
06 — CAN High (J-2284)
16 — Battery Power (напряжение АКБ)
По наличию выводов можно ориентировочно судить об используемом протоколе при помощи следующей таблицы:
Стандарт | Pin 2 | Pin 7 | Pin 10 | Pin 15 |
ISO-9141 и ISO-14230 | Должен присутствовать | Должен присутствовать (если автомобиль использует L-линию диагностики) | ||
PWM (J1850) | Должен присутствовать | Должен присутствовать | ||
VPW (J1850) | Должен присутствовать |
— протокол ISO-9141-2 идентифицируется наличием контакта 7 в диагностическом разъеме (K-line) и отсутствием 2 и/или 10 контактов в диагностическом разъеме. Используемые выводы — 4, 5, 7, 15 (может не быть), 16.
— SAE J1850 VPW (Variable Pulse Width Modulation). Используемые выводы — 2, 4, 5, 16 (без 10)
— SAE J1850 PWM (Pulse Width Modulation). Используемые выводы — 2, 4, 5, 10, 16.
Протоколы PWM, VPW идентифицируются отсутствием контакта 7 (K-Line) диагностического разъема.
5. Подавляющее большинство автомобилей используют протоколы ISO. Некоторые исключения:
— большая часть легковых автомобилей и легких грузовиков концерна GM используют протокол SAE J1850 VPW;
— большая часть автомобилей Ford использует протокол J1850 PWM.
Дополнительные сведения об OBD-II диагностике.
В рамках OBD-II стандартизированы не только назначения выводов диагностического разъема, его форма и протоколы обмена, но и частично стандартизированы и коды неисправностей (DTC — Diagnostic Trouble Code) — это предусмотрено стандартом SAE J2012). OBD-II-коды имеют единый формат, однако по их расшифровкам подразделяются на две большие группы — основные (generic) коды и дополнительные (расширенные, extended) коды. Основные коды жестко стандартизированы и их расшифровка одинакова для всех автомобилей, поддерживающих OBD-II. При этом надо понимать, что это не означает, что один и тот же код вызывается на разных автомобилях одной и той же «реальной» неисправностью (это зависит от особенностей конструкции как разных марок и моделей авто, так и разных автомобилей одной модели)! Дополнительные коды различаются по разным маркам автомобилей и были введены автопроизводителями специально для расширения возможностей диагностики.
Как уже говорилось, структура и основных и дополнительных OBD-II кодов одинакова — каждый код состоит из буквы латинского алфавита и четырех цифр (частично уже используются и буквы):
«Общая» группа (система),к которой относится кодПризнак основной/расширенный
кодПодсистема, к которой относится код
(для кодов P0XXX)Код неисправностиP — Powertrain codes — код связан с работой двигателя и/или АКППP0XXX, P2XXX, P34XX-P39XX — SAE Codes — основной (generic) код
P1XXX, P30XX-P33XX — MFG — код, определенный производителем (extended)
1 — Fuel and Air Metering — Ошибка вызвана системой регулирования топливно-воздушной смеси
2 — Fuel and Air Metering (Injector circuit) — Ошибка вызвана системой регулирования топливно-воздушной смеси (только по подсистеме подачи топлива)
3 — Ignition Systems or Misfire — Ошибка системы зажигания (в том числе — пропуски зажигания)
4 — Auxiliary Emission Controls — Ошибка дополнительной системы контроля за выбросами
5 — Vehicle Speed Control and Idle Control System — Ошибка системы контроля скорости и управления холостым ходом
6 — Computer Output Circuit — Неисправности контроллера или его выходных цепей
7, 8 — Transmission — Ошибки в работе трансмиссииFault (00-99) — Непосредственно код ошибки в соответствующей системе
B — Body codes — код связан с работой «кузовных систем» (подушки безопасности, центральный замок, электростеклоподъемники)B0XXX, B3XXX — SAE Codes — основной (generic) код
B1XXX, B2XXX — MFG — код, определенный производителем (extended)
С — Chassis codes — код относится к системе шасси (ходовой части)C0XXX, C3XXX — SAE Codes — основной (generic) код
C1XXX, C2XXX — MFG — код, определенный производителем (extended)
U — Network codes — код относится к системе взаимодействия между электронными блоками (например, к шине CAN)U0XXX, U3XXX — SAE Codes — основной (generic) код
U1XXX, U2XXX — MFG — код, определенный производителем (extended)
Узнать расшифровку OBD-II кодов неисправностей (всех основных и части расширенных) можно в нашем справочнике кодов, а также в информационных базах данных.
Приобрести любой из перечисленных в данной статье или в нашем каталоге сканеров можно обратившись в нашу фирму.
© АРДИО РУ, Виснап К.Н. Последнее обновление статьи 08.10.2005. Перепечатка только с согласия автора и с обязательной ссылкой.
Опубликовано 05.03.2013, автор Pavel
Введение
Вместе с ростом экологического движения в начале 1990-х годов в США был принят ряд стандартов, которые ввели обязательность оснащения электронных блоков управления автомобилями (ЭБУ, ECU) системой за контролем параметров работы двигателя, имеющих прямое или косвенное отношение к составу выхлопа. Стандарты также предусмотрели протоколы считывания информации об отклонениях в экологических параметрах работы двигателя и другой диагностической информации из ЭБУ. OBD-II как раз и является системой накопления и считывания такой информации. Изначальная «экологическая направленность» OBD-II, с одной стороны, ограничила возможности по его использованию в диагностике всего спектра неисправностей, с другой стороны, предопределила его крайне широкое распространение как в США, так и на автомобилях других рынков. В США применение системы OBD-II (и установка соответствующей колодки диагностики) обязательны с 1996 г. (требование распространяется как на автомобили, производимые в США, так и на автомобили неамериканских марок, продаваемые в США). На автомобилях Европы и Азии протоколы OBD-II применяются также с 1996 г. (на небольшом количестве марок/моделей), но особенно — с 2001 г. для автомобилей с бензиновыми двигателями (с принятием соответствующего европейского стандарта — EOBD) и с 2004 г. для автомобилей с дизельными двигателями. Тем не менее, стандарт OBD-II частично или полностью поддерживают и некоторые автомобили, выпущенные ранее 1996 (2001) годов (pre-OBD автомобили).
Например, из автомобилей, производимых в России и Украине, стандарт OBD-II поддерживают следующие:
Перечень протоколов OBD-2 (OBD II, ОБД-2):
Режимы диагностики
Протоколы OBD-II предоставляют диагносту ряд стандартизированных функциональных возможностей (режимов диагностики — modes):
Режим 1 — Считывание текущих параметров работы системы управления (Mode 1 PID Status & Live PID Information). Всего стандартом поддерживается около 20 параметров. Однако, каждый конкретный блок управления поддерживает ограниченное количество из них (например, в зависимости от установленных датчиков кислорода). С другой стороны, некоторые автопроизводители поддерживают расширенные наборы параметров — например, некоторые автомобили концерна GM поддерживают более 100 параметров. Через систему OBD-II диагностики можно считать (основные параметры):
Как правило, для анализа работы конкретной подсистемы системы управления двигателем, достаточно одновременно контролировать 2-3 параметра. Однако, иногда требуется одновременно просматривать и большее число. Число одновременно контролируемых параметров, а также формат их вывода (текстовый и/или графический) зависят как от возможностей конкретной программы-сканера, так и от скорости обмена информацией с блоком управления двигателем автомобиля (скорость зависит от поддерживаемого протокола). К сожалению, наиболее распространенный протокол ISO-9141 (см. ниже) является и самым медленным из всех — при работе с ним невозможно просматривать с приемлемой частотой дискретизации более 2-4 параметров.
Режим 2 — Получение сохраненной фотографии текущих параметров работы системы управления на момент возникновение кодов неисправностей (Mode 2 Freeze Frame).
Режим 3 — Считывание и просмотр кодов неисправностей(Mode 3 Read Diagnostic Trouble Codes (DTCs)).
Режим 4 — Очистка диагностической памяти (Mode 4 Reset DTC’s and Freeze Frame data) — стирание кодов неисправностей, фотографий текущий параметров, результатов тестов датчиков кислорода, результатов тестовых мониторов.
Режим 5 — Считывание и просмотр результатов теста датчиков кислорода (Mode 5 O2 Sensor Monitoring Test Result).
Режим 6 — Запрос последних результатов диагностики однократных тестовых мониторов (тестов, проводимых один раз в течение поездки) (Mode 6 Test results, non-continuosly monitored) — эти тесты контролируют работу катализатора, системы рециркуляции выхлопных газов (EGR), системы вентиляции топливного бака.
Режим 7 — Запрос результатов диагностики непрерывно действующих тестовых мониторов (тестов, выполняемых постоянно, пока выполняются условия для проведения теста) (Mode 7 Test results, continuosly monitored) — эти тесты контролируют состав топливно-воздушной смеси, пропуски зажигания (misfire), остальные компоненты, влияющие на выхлоп.
Режим 8 — Управление исполнительными механизмами.
Режим 9 — Запрос информации о диагностируемом автомобиле (Mode 9 Request vehicle information) — VIN-кода и калибровочных данных.
Режим ручного ввода команды запроса диагностической информации.
Надо учитывать, что как далеко не на каждом автомобиле блок управления поддерживает все перечисленные функции, так и не каждый диагностический сканер для OBD-II может дать диагносту возможность использовать все перечисленные режимы.
Используемые протоколы и применяемость OBD-II-диагностики на автомобилях разных марок
В рамках OBD-II используются пять протоколов обмена данными — ISO 9141, ISO 14230 (также именуется KWP2000), PWM, VPW и CAN (также каждый из протоколов имеет несколько разновидностей — например, разновидности отличаются по скорости обмена информацией). В Интернете встречаются «таблицы применимости», где указываются перечни марок и моделей автомобилей и поддерживаемые ими OBD-II-протоколы. Однако, надо учитывать, что одна и та же модель с одним и тем же двигателем, одного года выпуска может быть выпущена для разных рынков с поддержкой разных протоколов диагностики (точно также протоколы могут различаться и по моделям двигателей, годам выпуска). Таким образом, отсутствие автомобиля в списках не означает, что он не поддерживает OBD-II, так же как и присутствие не означает, что поддерживает и, тем более, полностью поддерживает (возможны неточности в списке, различные модификации автомобиля и пр.). Еще сложнее судить о поддержке конкретной разновидности OBD-II-стандарта.
Общей предпосылкой для того, чтобы предположить, что автомобиль поддерживает OBD-II диагностику, является наличие 16-контактного диагностического разъема (DLC — Diagnostic Link Connector) трапециевидной формы (на подавляющем большинстве OBD-II автомобилей он находится под приборной панелью со стороны водителя; разъем может быть как открыт, так и закрыт легко снимаемой крышкой с надписью «OBD-II», «Diagnose» и т.п.). Тем не менее, это условие необходимое, но недостаточное! Разъем OBD-II иногда устанавливается на автомобили, вообще не поддерживающие ни один из OBD-II-протоколов. В таких случаях необходимо пользоваться сканером, рассчитанным на работу с заводскими протоколами конкретной марки автомобиля — например, это касается автомобилей Opel Vectra B европейского рынка 1996-1997 гг. Для оценки применимости того или иного сканера для диагностики конкретного автомобиля необходимо определить, какой конкретно из OBD-II протоколов используется на конкретном автомобиле (если OBD-II вообще поддерживается). Для этого можно:
Назначение выводов разъема приведено в таблице. Использование контактов 1, 3, 8, 9, 11-13 стандартом SAE не определило и производили могут использовать их по своему усмотрению.
Подавляющее большинство автомобилей используют протоколы ISO. Некоторые исключения: