Как работать с вычислительной машиной

Математика 1 класс учебник Моро 1 часть страница 75

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

👉 Ответы на задания к странице 75. Математика 1 класс учебник Моро 1 часть. Моро М. И, Волкова В. С.

✔ Готовое домашнее задание с подробным решением

Рассмотри таблицы. Определи правило, по которому составлена каждая из них. Заполни свободную клетку в каждой таблице.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

В первой таблице три окрашенные в голубой цвет фигуры, три фигуры, окрашенные в голубой цвет, на половину, две белые фигуры. Следовательно, в первой таблице свободную клетку нужно заполнить квадратом белого цвета.

Во второй таблице три заполненных квадрата с разным количеством точек по краям, три пустых квадрата с разным количеством точек по краям, два крестика с разным количеством точек по краям. Следовательно, во второй таблице свободную клетку нужно заполнить крестиком с красным кружочком справа.

Расскажи, как работает Вычислительная машина. К числу на входе машина …

Расскажи, какие числа надо поставить в окошки со знаком «?».

Какие числа будут получаться на выходе машины, если на вход подавать одно за другим числа: 2, 6, 8, 3.

Чтобы ответить на поставленные вопросы, стоит внимательно рассмотреть рисунок. Все ответы спрятаны на иллюстрации к заданию.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

К числу на входе машина прибавляет число 2 (5 + 2 = 7).

Слева нужно поставить число 9, потому что 7 + 2 = 9

Справа нужно поставить число 4, потому что 4 + 2 = 6

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Если на входе поставить число 2, то на выходе будет 2 + 2 = 4

Если на входе поставить число 6, то на выходе будет 6 + 2 = 8

Если на входе поставить число 8, то на выходе будет 8 + 2 = 10

Если на входе поставить число 3, то на выходе будет 3 + 2 = 5

💡 Чтобы не искать ГДЗ к упражнениям в следующий раз сохрани в закладки. Нажми на клавиатуре CTRL + D или поделись в социальных сетях.

Присоединяйтесь к нам!

Получайте уведомления о выходе новых решебников и примите участие в ежемесячном розыгрыше.

Источник

Здравствуйте, представляю вашему внимаю третий пост из серии «О том как устроено IT». Но сначала пару новостей. Во-первых, серия из «О том как устроено IT» переименована в «Как устроено IT», это связано со второй новостью. Во-вторых, появился тег «Как устроено IT», можете подписаться на него, для того чтобы видеть посты этой серии. С предисловием на этом все приятного чтения.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Другим принципиальным отличием является отсутствие у АВМ хранимой программы, под управлением которой с помощью одной и той же вычислительной машины можно решать разнообразные задачи. Решаемая задача (класс задач) жёстко определяется внутренним устройством АВМ и выполненными настройками (соединениями, установленными модулями, клапанами и т. п.). Даже для универсальных АВМ для решения новой задачи требовалась перестройка внутренней структуры устройства.

При работе аналоговый компьютер имитирует процесс вычисления, при этом характеристики, представляющие цифровые данные, в ходе времени постоянно меняются.

Результатом работы аналогового компьютера являются либо графики, изображённые на бумаге или на экране осциллографа, либо электрический сигнал, который используется для контроля процесса или работы механизма.

Эти компьютеры идеально приспособлены для осуществления автоматического контроля над производственными процессами, потому что они моментально реагируют на различные изменения во входных данных. Такого рода компьютеры широко используются в научных исследованиях. Например, в таких науках, в которых недорогие электрические или механические устройства способны имитировать изучаемые ситуации.

В ряде случаев с помощью аналоговых компьютеров возможно решать задачи, меньше заботясь о точности вычислений, чем при написании программы для цифровой ЭВМ. Например, для электронных аналоговых компьютеров без проблем реализуются задачи, требующие решения дифференциальных уравнений, интегрирования или дифференцирования. Для каждой из этих операций применяются специализированные схемы и узлы, обычно с применением операционных усилителей. Также интегрирование легко реализуется и на гидравлических аналоговых машинах.

Аналоговые электронные компьютеры основываются на задании физических характеристик их составляющих. Обычно это делается методом включения-исключения некоторых элементов из цепей, которые соединяют эти элементы проводами, и изменением параметров переменных сопротивлений, ёмкостей и индуктивностей в цепях.

Автомобильная автоматическая трансмиссия является примером гидромеханического аналогового компьютера, в котором при изменении вращающего момента жидкость в гидроприводе меняет давление, что позволяет получить необходимый конечный коэффициент передачи.

До появления мощной и надёжной цифровой аппаратуры аналоговые вычислители широко применялись в авиационной и ракетной технике, для оперативной обработки различной информации и последующего формирования сигналов управления в автопилотах и различных более сложных системах автоматического управления полётом, или другими специализированными процессами.

Помимо технических применений (автоматические трансмиссии, музыкальные синтезаторы), аналоговые компьютеры используются для решения специфических вычислительных задач практического характера. Например, кулачковый механический аналоговый компьютер, изображённый на фото, применялся в паровозостроении для аппроксимации кривых 4 порядка с помощью преобразований Фурье.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Механические компьютеры использовались в первых космических полётах и выводили информацию с помощью смещения индикатора поверхностей.

В военной технике исторически выработалось ещё одно название аналоговых вычислительных устройств для управления огнём артиллерии, высотного бомбометания и других военных задач, требующих сложных вычислений — это счётно-решающий прибор. Примером может служить прибор управления зенитным огнём.

Аналоговая техника интересна для военных двумя чертами: она крайне быстра, и в условиях помех работоспособность машины восстановится, как только помеха пропадёт.

Сейчас аналоговые компьютеры в основном уступили своё место цифровым технологиям.

Мозг человека — самое мощное и эффективное «аналоговое устройство» из существующих. И хотя передача нервных импульсов происходит за счет дискретных сигналов, информация в нервной системе не представлена в цифровом виде. Нейрокомпьютеры — аналоговые, гибридные компьютеры (модели, реализованные на цифровых ЭВМ), построенные на элементах, которые работают аналогично клеткам мозга.

Аналоговая вычислительная машина, в которой машинные переменные воспроизводятся механическими перемещениями. При решении задач на АВМ данного типа необходимо, кроме масштабирования переменных, производить силовой расчет конструкции и расчет мертвых ходов. Достоинствами механических АВМ являются высокая надежность и обратимость, позволяющая воспроизводить прямые и обратные математические операции. Недостатки АВМ такого типа — высокая стоимость, сложность изготовления, большие габариты и вес, а также низкий коэффициент эффективности использования отдельных вычислительных блоков. Механические АВМ применяют при построении высоконадежных вычислительных устройств.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Аналоговая вычислительная машина, в которой переменные представлены в виде величин давления воздуха (газа) в различных точках специально построенной сети. Элементами такой АВМ являются дроссели, ёмкости и мембраны. Дроссели играют роль сопротивлений, могут быть постоянными, переменными, нелинейными и регулируемыми. Пневматические ёмкости представляют собой глухие или проточные камеры, давление в которых вследствие сжимаемости воздуха растет по мере их наполнения. Мембраны используются для преобразования давления воздуха.

В 1960-х годах разрабатывались для получения средства дискретных вычислений с высокой радиационной стойкостью. Были разработаны элементы, выполняющие основные логические операции и элементы памяти без механических подвижных элементов.

Такие элементы очень долговечны, поскольку в них практически отсутствуют подвижные части, и, как следствие, нечему ломаться. В случае засорения каналов логические матрицы легко разбираются и промываются. Работает пневмокомпьютер от промышленной пневмосети.

Сейчас пневмокомпьютеры используются в отраслях промышленности, где требуется повышенная вибрационная стойкость, работоспособность в очень широком диапазоне температур или требуется управление пневматическими силовыми устройствами. В последнем случае устраняется необходимость в преобразователях электрического сигнала в перемещение. Это — роботы и автоматика, работающие в металлургии, в горнорудной промышленности. Известны случаи управления элементами авиационных двигателей, автоматикой ракетных систем, силовыми приводами вертолетов и самолетов. Существует также целая категория производств, агрегатов и установок, где применение электричества, даже самых низких напряжений, очень нежелательно. Это химия органических соединений, нефтеперегонные заводы, подземная добыча угля и руды. Они широко используют пневматическую автоматику.

В. С. Лукьянов в 1934 году предложил принцип гидравлических аналогий и в 1936 году реализовал первый «гидравлический интегратор» — устройство, предназначенное для решения дифференциальных уравнений, действие которого основано на протекании воды. В дальнейшем подобные устройства применялись в десятках организаций и использовались до середины 1980-х годов

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Трехмерный экспериментальный гидроинтегратор Лукьянова

Первые экземпляры были скорее экспериментальными, были сделаны из жести и стеклянных трубок, и каждый мог использоваться для решения только одной задачи. В 1941 году Лукьяновым был создан гидравлический интегратор модульной конструкции, который позволял собрать машину для решения разнообразных задач. В 1949 году Уильям Филлипс создал гидравлический компьютер MONIAC.

В настоящее время два гидроинтегратора Лукьянова хранятся в Политехническом музее.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

MONIAC был аналоговым компьютером, который использовал флюидику (струйную логику) для моделирования процессов экономики. Название MONIAC, видимо, появилось по ассоциации с ENIAC (одной из первых ЭВМ) и англ. money

Сам компьютер состоял из ряда прозрачных пластиковых емкостей и труб, которые крепились к деревянной доске. Каждый бак представлял какой-либо аспект национальной экономики Великобритании. Денежный поток демонстрировался цветной водой. В верхней части доски был большой резервуар, который назывался казной. Вода (представляющая деньги) протекала из казны в другие резервуары, представляющие различные способы расхода денег. Например, были баки, которые «отвечали» за здравоохранение и образование. Для увеличения расходов на здравоохранение следовало открыть кран для слива воды из казны в бак, который «олицетворял» расходы на здравоохранение. Далее вода текла в другие баки, представляющие другие взаимодействия в экономике. Вода могла закачиваться обратно в казну из некоторых баков, представлявших налоги. Изменения налоговых ставок были смоделированы путём увеличения или уменьшения мощности насоса.

С помощью тех же принципов моделировались сбережения и доход от инвестиций. Расход воды автоматически контролировался через серию поплавков, противовесов, электродов и проводов. Когда уровень воды в баке достигал определенного уровня, включались соответствующие насосы.

К своему удивлению, создатели обнаружили, что MONIAC можно откалибровать с точностью до ± 2 %.

Поток воды между емкостями определялся экономическими принципами и настройкой параметров. Экономические показатели (например, налоговые ставки и инвестиционный курс) вводились установкой клапанов, которые контролировали поток воды в компьютере. Оператор мог экспериментировать с различными настройками и наблюдать за их влиянием на модель. Благодаря своей способности моделировать тонкое взаимодействие целого ряда параметров, MONIAC стал весьма мощным инструментом для своего времени.

Если подбор параметров приводил к «жизнеспособной экономике», то состояние компьютера стабилизировалось, и можно было получить результаты подсчётов.

MONIAC предназначался для использования в качестве учебного пособия, но оказался эффективным и в качестве экономического симулятора. Во время создания MONIAC ещё не было цифровых компьютеров, которые могли бы осуществлять сложное экономическое моделирование. Использование нескольких существовавших в 1949 году компьютеров было ограничено государственными и военными нуждами. Кроме того, у них не было достаточных возможностей визуального отображения, и они не могли иллюстрировать работу сложных моделей. Наблюдая за работой MONIAC, студенты могли гораздо проще понять взаимосвязанные процессы в экономике. Судя по списку организаций, которые приобрели этот компьютер, MONIAC использовался и как учебное пособие, и как симулятор.

Это аналоговые вычислительные машины, в которых переменные представляются электрическим напряжением постоянного тока. Получили широкое распространение в связи с высокой надёжностью, быстродействием, удобством управления и получения результатов.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Теперь о представителя данного класса ВМ.

FERMIAC или Тележка Монте-Карло — аналоговый компьютер, изобретённый физиком Энрико Ферми для изучения перемещения нейтронов.

FERMIAC использует Метод Монте-Карло для моделирования переноса нейтронов в различных типах ядерных систем. С учетом начального распределения нейтронов, целью процесса является создание многочисленных «родословных нейтронов», или моделей поведения отдельных нейтронов, в том числе каждого столкновения, рассеяния и деления.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Специализированная АВМ, предназначенная для решения линейных краевых задач систем линейных дифференциальных уравнений. Разработана в Институте кибернетики АН УССР в 1962 году.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Семейство аналоговых вычислительных машин. Название является аббревиатурой слов «модель нелинейная». Были предназначены для решения задач Коши для обыкновенных дифференциальных уравнений.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Вспомнилась шифровалка из «Код Энигма»

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Как устроено IT. Пост 3. Перфокарты

В этом посте я расскажу о истории и принципе работы перфокарт.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Cоветский вариант перфокарты IBM, 1980 г.

Перфокарты впервые начали применяться в ткацких станках Жаккарда (1808) для управления узорами на тканях. В информатике перфокарты впервые были применены в «аналитической машине» Бэббиджа и в «интеллектуальных машинах» коллежского советника С. Н. Корсакова (1832), механических устройствах для информационного поиска и классификации записей. В конце XIX в. началось использование перфокарт для обработки результатов переписей населения в США

Существовало много разных форматов перфокарт; наиболее распространённым был «формат IBM», введённый в 1928 г. — 12 строк и 80 колонок, размер карты 187,325 × 82,55 мм. Первоначально углы были острые, а с 1964 г. — скруглённые. Примечательно, что по приблизительным подсчётам, гигабайт информации, представленной в виде перфокарт, весил бы примерно 22 тонны.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Перфокарта, формат IBM

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Поздний европейский вариант перфокарты IBM

Компьютеры первого поколения, в 1920-х—1950-х годах, использовали перфокарты в качестве основного носителя при хранении и обработке данных. Затем, в течение 1970-х — начале 1980-х годов, они использовались только для хранения данных и постепенно были замещены магнитными лентами. В настоящее время перфокарты не используются нигде, кроме устаревших систем, однако оставили свой след в компьютерной технике: отображаемый по умолчанию текстовый видеорежим дисплеев подавляющего большинства компьютерных устройств содержит по горизонтали 80 знакомест, ровно столько, сколько их было на стандартной перфокарте. Главным преимуществом перфокарт было удобство манипуляции данными — в любом месте колоды можно было добавить карты, удалить, заменить одни карты другими (то есть фактически выполнять многие функции, позже реализованные в интерактивных текстовых редакторах).

В 2011 году в США всё еще существовала компания Cardamation, поставлявшая перфокарты и устройства для работы с перфокартами. Об использовании перфокарт в современных организациях сообщалось в 1999 и 2012 годах.

А теперь о принципе работы. Перфокарта может считываться в двух режимах: двоичном и текстовом.

При работе с перфокартами в текстовом режиме каждая колонка обозначает один символ; таким образом, одна перфокарта представляет строку из 80 символов. Допускаются лишь некоторые комбинации пробивок. Наиболее просто кодируются цифры — одной пробивкой в позиции, обозначенной данной цифрой. Буквы и другие символы кодируются несколькими пробивками в одной колонке. Отсутствие пробивок в колонке означает пробел.Для удобства работы с текстовыми данными вдоль верхнего края перфокарты часто печатались те же символы в обычном человекочитаемом виде.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Заполненная перфокарта в текстовом режиме (строка «С*10,05 ОПРЕДЕЛЕНИЕ АДРЕСА АКТИВНОЙ РЕАЛИЗАЦИИ ПАРАМЕТРА ЗАДАЧИ»)

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Различные комбинации перфокарты

Следует заметить, что везде одинаково кодировались только цифры и латинские буквы; в кодировании остальных символов существовали большие различия.

Существую также перфоленты.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Первые перфоленты использовались с середины XIX века в телеграфии, отверстия в них располагались в 5 рядов, для передачи данных использовался код Бодо.

Прообразом перфолент стали перфокарты. Объединенные особым образом перфокарты образовывали ленту, которую можно удобно изменять. Постепенно этот поток поступающих карт с данными эволюционировал в одну «непрерывную карту» или ленту. Первые перфоленты использовались при передаче и хранении телеграмм.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Серия из перфокарт, использовавшихся в ткацких станках Жаккарда

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Памятка программиста. (Вычислительный центр института «Энергосетьпроект»), 1960-е годы. Машинный код «Минск-22»: код перфоленты и значение кода.

С середины XX века перфоленты стали использоваться в качестве носителя информации для первых электромеханических вычислительных машин. Во одном из первых таких устройств, Марке I, использовались перфоленты с разрядностью в 24 бита.

В середине ленты идёт дорожка с более мелкой перфорацией, так называемая «транспортная дорожка». Она служит для перемещения ленты с помощью зубчатого колеса.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Слово «Wikipedia», записанное на перфоленте

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Перфолента для компьютера Марк I, содержащая отметки объёма программы

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

О том как устроено IT. Пост 1. Механические вычислительные устройства.

Итак, пилот нашел своего читателя поэтому продолжаем. В этом посте расскажу про различные механический вычислительные устройства.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Антикитерский механизм (Фрагмент A — спереди)

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Антикитерский механизм (Фрагмент A — сзади)

Механизм содержал не менее 30 бронзовых шестерён в прямоугольном деревянном корпусе, на бронзовых передней и задней панелях которого были размещены циферблаты со стрелками. Две прямоугольные бронзовые защитные пластины прикрывали переднюю и заднюю панель. Ориентировочные размеры в сборе 31,5×17×6 см.

Механизм использовался для расчёта движения небесных тел и позволял узнать дату 42 астрономических событий; для вычисления лунных фаз использовалась дифференциальная передача, изобретение которой исследователи долгое время относили не ранее чем к XVI веку. Впрочем, с уходом античности навыки создания таких устройств были позабыты; потребовалось около полутора тысяч лет, чтобы люди вновь научились создавать похожие по сложности механизмы. С помощью специально разработанной компьютерной программы определено что устройство было сделано в полосе северной широты 33,3-37. Oстров Родос (36,4 с.ш.) и Сиракузы (37,1 с.ш.) часто предлагаются в качестве мест, где изготовлен или применялся антикитерский механизм.

Устройства, аналогичные антикитерскому механизму, упоминаются более чем в дюжине литературных произведений, которые написаны с 300 года до н. э. по 500 год н. э.

Первые исследования механизма проводились с 1902 по 1910 и с 1925 по 1930 годы. Уже в ходе первых осмотров прибора стало ясно, что астролябия, как некоторые изначально называли этот сложный прибор, была гораздо более продвинутой, чем любые известные астролябии. Редиадис, Радос и Теофанидис (все — греческие военно-морские офицеры и адмиралы) написали ряд статей на эту тему с 1903 по 1930 годы. Теофанидис сконструировал первую бронзовую модель астрономических часов, которые показывали некоторые из планет. Но более серьёзные результаты были получены с помощью рентгеновских исследований Прайсом в 1951—1978 годах.

В 1623 году Вильгельм Шиккард изобрел «Считающие часы» — первый арифмометр, умевший выполнять четыре арифметических действия. Считающими часами устройство было названо потому, что, как и в настоящих часах, работа механизма была основана на использовании звёздочек и шестерёнок. Это изобретение нашло практическое использование в руках друга Шиккарда, философа и астронома Иоганна Кеплера.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

За Считающими часами последовали машины Блеза Паскаля («Паскалина», 1642 г.) и Готфрида Вильгельма Лейбница — арифмометр Лейбница.

Суммирующая машина Паскаля. Француз Блез Паскаль начал создавать суммирующую машину «Паскалину» в 1642 году в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и часто выполнял долгие и утомительные расчёты.

Машина Паскаля представляла собой механическое устройство в виде ящичка с многочисленными связанными одна с другой шестерёнками.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Складываемые числа вводились в машину при помощи соответствующего поворота наборных колёсиков. На каждое из этих колёсиков, соответствовавших одному десятичному разряду числа, были нанесены деления от 0 до 9. При вводе числа колесики прокручивались до соответствующей цифры. Совершив полный оборот, избыток над цифрой 9 колёсико переносило на соседний разряд, сдвигая соседнее колесо на 1 позицию. Ответ появлялся в верхней части металлического корпуса.

Несмотря на преимущества автоматических вычислений, использование десятичной машины для финансовых расчётов в рамках действовавшей в то время во Франции денежной системы было затруднительным. Расчёты велись в ливрах, су и денье. В ливре насчитывалось 20 су, в су — 12 денье. Использование десятичной системы в недесятичных финансовых расчётах усложняло и без того нелёгкий процесс вычислений. Тем не менее примерно за 10 лет Паскаль построил около 50 и даже сумел продать около дюжины вариантов своей машины. Несмотря на вызываемый ею всеобщий восторг, машина не принесла богатства своему создателю. Сложность и высокая стоимость машины в сочетании с небольшими вычислительными способностями служили препятствием её широкому распространению. Тем не менее, заложенный в основу «Паскалины» принцип связанных колёс почти на три столетия стал основой для большинства создаваемых вычислительных устройств.

Схему подобного арифмометру механизма нарисовал Леонардо да Винчи. Это устройство датируется 1500 годом и представляет собой 13-разрядную суммирующую машину на десятизубых колёсах. Однако в своё время идеи Леонардо никакого распространения не получили.

Арифмометр Лейбница. Идея создания машины, выполняющей вычисления, появилась у выдающегося немецкого математика и философа Готфрида Вильгельма Лейбница после его знакомства с голландским математиком и астрономом Христианом Гюйгенсом. Огромное количество вычислений, которое приходилось делать астроному, навело Лейбница на мысль о создании механического устройства, которое могло бы облегчить такие расчёты («Поскольку это недостойно таких замечательных людей, подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины»).

Арифмометр был создан Лейбницем в 1673 году. Сложение чисел выполнялось в десятичной системе счисления при помощи связанных друг с другом колёс, так же как на вычислительной машине Блеза Паскаля. Добавленная в конструкцию движущаяся часть и специальная рукоятка, позволявшая крутить ступенчатое колесо (в последующих вариантах машины — цилиндры), позволяли ускорить повторяющиеся операции сложения, при помощи которых выполнялось деление и перемножение чисел. Необходимое число повторных сложений выполнялось автоматически.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Копия арифмометра Лейбница в Немецком музее.

Были построены два прототипа, до сегодняшнего дня только один сохранился в Национальной библиотеке Нижней Саксонии в Ганновере, Германия. Несколько поздних копий находятся в музеях Германии, например, один в Немецком музее в Мюнхене.

Несмотря на недостатки арифмометра Лейбница, он дал изобретателям арифмометров новые возможности. Привод, изобретённый Лейбницем — шагающий цилиндр или колесо Лейбница — использовался во многих вычислительных машинах на протяжении 300 лет, до 1970-х годов.

Лейбниц также описал двоичную систему счисления — один из ключевых принципов построения всех современных компьютеров. Однако, вплоть до 1940-х многие последующие разработки были основаны на более сложной в реализации десятичной системе.

В 1820 году Шарль Ксавье Тома де Кольмар создал первое серийно выпускавшееся механическое счётное устройство — арифмометр Томаса, который мог складывать, вычитать, умножать и делить. В основном, он был основан на работе Лейбница.

В 1845 году Израиль Штаффель представил счётную машину, которая кроме четырёх арифметических действий могла извлекать квадратные корни. Арифмометры, считающие десятичные числа, использовались до 1970-х.

Вычислительная машина Штаффеля. Ни один экземпляр машины не сохранился до XXI века. Её конструкция известна только по историческим источникам, в основном, это статьи для прессы, отчёты и решения жюри c выставок, на которых демонстрировалась машина.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Создатель машины, Израиль Авраам Штаффель, был жителем Варшавы, по профессии — часовщик. Штаффель вырос в бедной еврейской семье и не имел доступа к научным публикациям, рассказывающих о последних изобретениях Западной Европы. Выучил польский язык, что позволило ему читать научно-технические публикации по механике, издаваемые в Царстве Польском. Неизвестно, было ли ему известно о счётных машинах других варшавских изобретателей, Авраама Штерна или Хаима Слонимского, и поэтому невозможно достоверно утверждать, как те повлияли на сконструированное им устройство. Штаффель не был знаком с конструкцией арифмометра де Кольмара или других счётных машин, созданных в Западной Европе. В связи с этим следует предположить, что построенная им машина была его собственным изобретением, мало похожей на разработанные ранее вычислительные устройства. Штаффель начал строить машину в 1835 году и закончил работы через 10 лет. Впервые он продемонстрировал машину публике в 1845 году. Позже Штаффель представил ещё несколько моделей машины, содержащих различные усовершенствования. В 1845 году на промышленной выставке в Варшаве Израиль Авраам Штаффель был награждён серебряной медалью. В комитет, присуждающий медаль. В описании машины отмечалось значительное снижение времени, необходимого на выполнение вычислений по сравнению с ручными расчётами на бумаге.

В том же 1845 году Штаффель ознакомил с машиной министра народного просвещения, президента Петербургской академии наук Уварова, когда тот был в Варшаве, Уваров обещал ему содействие. После получения Штаффелем серебряной медали на выставке наместник Царства Польского Паскевич, князь Варшавский, выдал ему 150 рублей на поездку в Санкт-Петербург для представления машины в академии наук.В 1846 году Уваров поручил академии исследовать машину. По результатам исследования она получила широкое признание среди членов академии. В 1851 году машина вместе с некоторыми другими устройствами Штаффеля была представлена на Всемирной выставке в Лондоне. Машина Штаффеля получила серебряную медаль и была признана лучшей из вычислительных машин, участвовавших в выставке.

Механизм машины был основан на колесе Лейбница.

В 1804 году Жозеф Мари Жаккар разработал ткацкий станок, в котором вышиваемый узор определялся перфокартами. Серия карт могла быть заменена, и смена узора не требовала изменений в механике станка. Это было важной вехой в истории программирования.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Перфокарточная система музыкального автомата

В 1832 году Семен Корсаков применил перфорированные карты в конструкции разработанных им «интеллектуальных машин», механических устройств для информационного поиска, являющихся прообразами современных баз данных и, в какой-то степени, — экспертных систем. С. Н. Корсаков является пионером русской кибернетики. Основное стремление С. Н. Корсакова — усиление возможностей разума посредством разработки научных методов и специальных устройств. В первой половине XIX века он изобрел и сконструировал ряд действующих механических устройств, функционирующих на основе перфорированных таблиц и предназначенных для задач информационного поиска и классификации.

Гомеоскоп прямолинейный с неподвижными частями. Он представляет собой наиболее простое из всех устройств Корсакова. Пользуясь им, можно найти среди большого числа записей, отображённых в гомеоскопической перфорированной таблице, ту, которая содержит все признаки другой заданной записи.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Гомеоскоп прямолинейный с подвижными частями. Он может указывать то же самое, что и гомеоскоп прямолинейный с неподвижными частями, и в дополнение к этому он находит и отделяет из заданной записи все те признаки, которые соответствуют (или не соответствуют) аналогичным признакам других записей в таблице.

Плоский гомеоскоп. Плоский гомеоскоп аналогично указывает соответствия, имеющиеся у сравниваемых между собой записей, число признаков которых может достигать многих тысяч. С. Н. Корсаков утверждает, что число признаков можно довести до одного миллиона, используя, так называемые, градуированные стержни. В целом плоский гомеоскоп позиционируется Корсаковым как устройство для обработки больших массивов данных.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Идеоскоп представляет наиболее «хитроумное» из всех пяти устройств, предложенных С. Н. Корсаковым. Идеоскоп одновременно позволяет выполнить исчисление следующих значений:

множество вообще возможных признаков, но отсутствующих в заданной и сравниваемой записях

множество признаков заданной записи, но которых нет в сравниваемой записи из идеоскопической таблицы

множество общих признаков для заданной и сравниваемой записей

множество общих наиболее важных признаков

множество наиболее важных признаков сравниваемой записи из таблицы, но которые отсутствуют в заданной записи

множество признаков сравниваемой записи из таблицы, которые отсутствуют в заданной записи.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Простой компаратор. Компаратор определяет те же операции с множествами, что и идеоскоп. Преимущество компаратора заключается в том, что признаки сравниваемых идей можно задать непосредственно (динамически) перед началом сравнения, не требуется заранее подготавливать и использовать перфорированные таблицы. Ограничение состоит в том, что за один раз возможно сравнение только двух идей.

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

В целом, изобретенные С. Н. Корсаковым машины позволяют быстро находить, сравнивать и классифицировать множества информационных записей (идей) по набору многочисленных признаков (деталей). C. Н. Корсаков позиционирует свои машины как усиливающие человеческий разум для одновременного охвата большого количества объектов и их сравнения по множеству признаков. Для реализации своих машин С. Н. Корсаков по существу впервые применил перфорированные карты в информатике. В работах С. Н. Корсакова содержится целый ряд новых для того времени идей, как то: многокритериальный поиск с учетом относительной степени важности различных критериев, способ обработки больших массивов данных, предтеча современных экспертных систем, и даже попытка определить понятие алгоритма.

С. Н. Корсаков предпринял два шага к продвижению своих изобретений. В 1832 г. им была издана брошюра «Начертание нового способа исследования при помощи машин, сравнивающих идеи». По традиции того времени, брошюра была написана на французском языке. В том же году С. Н. Корсаков предпринимает попытку представить свои изобретения на суд Императорской Академии наук в Санкт-Петербурге. Однако С. Н. Корсакову не повезло. Изобретения его не были в должной мере оценены современниками и не получили официальной поддержки. Заключение комиссии содержало ироническое замечание: «Г-н Корсаков потратил слишком много разума на то, чтобы научить других обходиться без разума».

В 1838 году Чарльз Бэббидж перешёл от разработки Разностной машины к проектированию более сложной аналитической машины, принципы программирования которой напрямую восходят к перфокартам Жаккара.

Разностная машина Чарльза Бэббиджа. Предназначен для автоматизации вычислений путём аппроксимации функций многочленами и вычисления конечных разностей. Возможность приближённого представления в многочленах логарифмов и тригонометрических функций позволяет рассматривать эту машину как довольно универсальный вычислительный прибор.

В 1822 году Бэббиджем была построена модель разностной машины, состоящая из валиков и шестерней, вращаемых вручную при помощи специального рычага. Заручившись поддержкой Королевского общества, посчитавшего его работу «в высшей степени достойной общественной поддержки», Бэббидж обратился к правительству Великобритании с просьбой о финансировании полномасштабной разработки. В 1823 году правительство Великобритании предоставило ему субсидию в размере 1500 фунтов стерлингов (общая сумма правительственных субсидий, полученных Бэббиджем на реализацию проекта, составила в конечном счёте 17 000 фунтов стерлингов). Разрабатывая машину, Бэббидж и не представлял всех трудностей, связанных с её реализацией, и не только не уложился в обещанные три года, но и спустя девять лет вынужден был приостановить свою работу. Однако часть машины все же начала функционировать и производила вычисления даже с большей точностью, чем ожидалось. Конструкция разностной машины основывалась на использовании десятичной системы счисления. Механизм приводился в действие специальными рукоятками. Когда финансирование создания разностной машины прекратилось, Бэббидж занялся проектированием гораздо более общей аналитической машины, но затем всё-таки вернулся к первоначальной разработке. Улучшенный проект, над которым он работал между 1847 и 1849 годами, носил название «Разностная машина № 2».

Как работать с вычислительной машиной. Смотреть фото Как работать с вычислительной машиной. Смотреть картинку Как работать с вычислительной машиной. Картинка про Как работать с вычислительной машиной. Фото Как работать с вычислительной машиной

Копия разностной машины в лондонском Музее науки

Несмотря на неудачу с разностной машиной, Бэббидж в 1833 году задумался о создании программируемой вычислительной машины, которую он назвал аналитической (прообраз современного компьютера). В отличие от разностной машины, аналитическая машина позволяла решать более широкий ряд задач. Именно эта машина стала делом его жизни и принесла посмертную славу. Он предполагал, что построение новой машины потребует меньше времени и средств, чем доработка разностной машины, так как она должна была состоять из более простых механических элементов. С 1834 года Бэббидж начал проектировать аналитическую машину.

Архитектура современного компьютера во многом схожа с архитектурой аналитической машины. В аналитической машине Бэббидж предусмотрел следующие части: склад (store), фабрика или мельница (mill), управляющий элемент (control) и устройства ввода-вывода информации.Склад предназначался для хранения как значений переменных, с которыми производятся операции, так и результатов операций. В современной терминологии это называется памятью. Мельница (арифметико-логическое устройство, часть современного процессора) должна была производить операции над переменными, а также хранить в регистрах значение переменных, с которыми в данный момент осуществляет операцию. Третье устройство, которому Бэббидж не дал названия, осуществляло управление последовательностью операций, помещением переменных в склад и извлечением их из склада, а также выводом результатов. Оно считывало последовательность операций и переменные с перфокарт. Перфокарты были двух видов: операционные карты и карты переменных. Из операционных карт можно было составить библиотеку функций. Кроме того, по замыслу Бэббиджа, Аналитическая машина должна была содержать устройство печати и устройство вывода результатов на перфокарты для последующего использования.

Только после смерти Чарлза Бэббиджа его сын, Генри Бэббидж, продолжил начатое отцом дело. В 1888 году Генри сумел построить по чертежам отца центральный узел аналитической машины. А в 1906 году Генри совместно с фирмой Монро построил действующую модель аналитической машины, включающую арифметическое устройство и устройство для печатания результатов. Машина Бэббиджа оказалась работоспособной.

В 1864 году Чарлз Бэббидж написал: «Пройдёт, вероятно, полстолетия, прежде чем люди убедятся, что без тех средств, которые я оставляю после себя, нельзя будет обойтись». В своём предположении он ошибся на 30 лет. Только через 80 лет после этого высказывания была построена машина МАРК-I, которую назвали «осуществлённой мечтой Бэббиджа». Архитектура МАРК-I была очень схожа с архитектурой аналитической машины. Говард Эйкен на самом деле серьёзно изучал публикации Бэббиджа и Ады Лавлейс перед созданием своей машины, причём его машина идеологически незначительно ушла вперёд по сравнению с недостроенной аналитической машиной. Производительность МАРК-I оказалась всего в десять раз выше, чем расчётная скорость работы аналитической машины.

В 1948 году появился Curta — небольшой арифмометр, который можно было держать в одной руке. В 1950-х — 1960-х годах на западном рынке появилось несколько марок подобных устройств.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *